ユーザーズガイド LUXMAN LV-105U SERVICE MANUAL
Lastmanualsはユーザー主導型のハードウエア及びソフトウエアのマニュアル(ユーザーガイド・マニュアル・クイックスタート・技術情報など)を共有・保存・検索サービスを提供します。 製品を購入する前に必ずユーザーガイドを読みましょう!!!
もしこの書類があなたがお探しの取扱説明書・マニュアル・機能説明・回路図の場合は、今すぐダウンロード。Lastmanualsでは手軽に早くLUXMAN LV-105Uのユーザマニュアルを入手できます。 LUXMAN LV-105Uのユーザーガイドがあなたのお役に立てばと思っています。
LUXMAN LV-105UのユーザーガイドをLastmanualsがお手伝いします。
マニュアル抽象的: マニュアル LUXMAN LV-105USERVICE MANUAL
詳しい操作方法はユーザーガイドに記載されています。
[. . . ] 13 17
3
13
17
22
1 2 3
Circuit: Common plate voltage amplifier (cathode follower) with 12AU7 (fixed bias 1)
18
4 5 6 7 8 9
v(a1:4, a1:3) = 1. 000000e+02 v(a1:2, a1:3) = -3. 64683e+00 v:a1:bb#branch = -3. 03030e-03 abs(v(2)/v(1)) = 9. 278865e-01 abs(v(1)/i(vi)) = 1. 386594e+06 abs(v(4)/i(vo)) = 6. 089417e+02
2. 3. 2
1
2
2
( ??) (??)
RC
COMP2 CI
1 3 IN 1 µF 2
X1
12AU7
4
VBB CO
3 1000 µF 200 V
VI
RG 100 kΩ VG 1 96. 35 V
OUT 2 4
RL
33 kΩ 0
RL
100 MΩ
2. 11:
(
2)
(??) Zi
Rg
=∞
= Rg
A Zi Zo 17. 18064 × 33 = 0. 9274518 + 17. 18064)33 + 11. 34946 = 100 [kΩ]
=
(1
=
1
1+17. 18064 11. 34946
+
1 33
= 0. 6126705 [kΩ]
100%
|Ao | | Ao | = µ
Af rp
RL
+ RL
(2. 24)
β=1 =
Ao 1
Af
+ Ao
=
1
µr R +R
L p
L
+ µr
RL
p
=
+RL
rp
µRL + (1 + µ)RL
(2. 25)
(??)
Rg
=∞
com_p_2. cir
1 2 3
Common plate voltage amplifier (cathode follower) with 12AU7 (fixed bias 2) . INCLUDE 12AU7. lib . SUBCKT COMP2 IN OUT
19
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
X1 4 2 3 12AU7 RL 3 0 33k VBB 4 0 200V RG 2 1 100k VG 1 0 96. 35317V CI 2 IN 1u CO 3 OUT 1000u . ENDS XA1 1 2 COMP2 VI 1 0 DC 0V AC 1V RL 2 0 100Meg XA2 3 4 COMP2 VS 3 0 DC 0V VO 4 0 DC 0V AC 1V . control op print v(a1:4, a1:3) v(a1:2, a1:3) v:a1:bb#branch ac dec 1 1k 1k print abs(v(2)/v(1)) abs(v(1)/i(vi)) abs(v(4)/i(vo)) . endc . END
1 2 3 4 5 6 7 8 9
Circuit: Common plate voltage amplifier (cathode follower) with 12AU7 (fixed bias 2) v(a1:4, a1:3) = 1. 000000e+02 v(a1:2, a1:3) = -3. 64683e+00 v:a1:bb#branch = -3. 03030e-03 abs(v(2)/v(1)) = 9. 274435e-01 abs(v(1)/i(vi)) = 1. 000002e+05 abs(v(4)/i(vo)) = 6. 126713e+02
2. 3. 3
??
3
1
RC 1
COMP3 CI 1 µF X1
12AU7
4
1 3 IN
2
CO
1000 µF 3
VBB 203. 65 V
OUT 2 4
RG 100 kΩ VI
RK 1203 Ω
5
CK
1000 µF
RL
100 MΩ
RL
33 kΩ
0
2. 12:
(
1)
20
com_p_3. cir
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Common plate voltage amplifier (cathode follower) with 12AU7 (self bias 1) . INCLUDE 12AU7. lib . SUBCKT COMP3 IN OUT X1 4 2 3 12AU7 RK 3 5 1203. 454 CK 3 5 1000u RL 5 0 33k VBB 4 0 203. 64683V RG 2 5 100k CI 2 IN 1u CO 3 OUT 1000u . ENDS XA1 1 2 COMP3 VI 1 0 DC 0V AC 1V RL 2 0 100Meg XA2 3 4 COMP3 VS 3 0 DC 0V VO 4 0 DC 0V AC 1V . control op print v(a1:4, a1:3) v(a1:2, a1:3) v:a1:bb#branch ac dec 1 1k 1k print abs(v(2)/v(1)) abs(v(1)/i(vi)) abs(v(4)/i(vo)) . endc . END
1 2 3 4 5 6 7 8 9
Circuit: Common plate voltage amplifier (cathode follower) with 12AU7 (self bias 1) v(a1:4, a1:3) = 1. 000000e+02 v(a1:2, a1:3) = -3. 64683e+00 v:a1:bb#branch = -3. 03030e-03 abs(v(2)/v(1)) = 9. 278865e-01 abs(v(1)/i(vi)) = 1. 386595e+06 abs(v(4)/i(vo)) = 6. 089417e+02
2. 3. 4
4
2
CK
33 kΩ ( ) eo
RL
RK
??
= = = =
(i1 (i1 (i1 eg
+ i2 )RL + i2 Rk + i2 )RL + i2 (r p + Rk ) + i2 )RL + i1 Rg + (i1 + i2 )RL
(2. 26) (2. 27) (2. 28) (2. 29)
µeg
ei ei
eg
= = =
ei (1 (1
− eo = ei − (i1 + i2 )RL − i2 Rk + µ)(i1 + i2 )RL + {(1 + µ)Rk + r p }i2 + µ)RL i1 + {r p + (1 + µ)RL + (1 + µ)Rk }i2
21
µei
COMP4 CI 1 µF X1
12AU7
4
1 3 IN
2
VBB CO
1000 µF 3 200 V OUT 2 4
RG
100 kΩ
RK
1203 Ω 5
VI
RL
100 MΩ
RL 31. 8 kΩ
0
2. 13:
(
2)
ei i1
= = = = =
(RL
i2
eo
+ Rg )i1 + RL i2 r p + RL + (1 + µ)Rk ei (1 + µ)(RL Rg + Rk Rg + Rk RL ) + r p (RL + Rg ) µRg − RL ei (1 + µ)(RL Rg + Rk Rg + Rk RL ) + r p (RL + Rg ) r p RL + µ(Rk RL + Rg RL + Rg Rk ) ei (1 + µ)(RL Rg + Rk Rg + Rk RL ) + r p (RL + Rg ) µ(RL + Rk + Rk RL /Rg ) + RL r p /Rg ei (1 + µ)(RL + Rk + Rk RL /Rg ) + (RL + Rg )r p /Rg
Zi Zo
A
A
= = =
Zi
µ(RL + Rk + Rk RL /Rg ) + RL r p /Rg (1 + µ)(RL + Rk + Rk RL /Rg ) + (RL + Rg )r p /Rg (1 + µ)(RL Rg + Rk Rg + Rk RL ) + r p (RL + Rg ) ei = i1 r p + RL + (1 + µ)Rk
1
1+µ rp
(2. 30)
(2. 31)
Zo
+
Rk +Rg //RL
1
(2. 32)
R A
= = = =
RL
Zi Zo
+ Rk + Rk RL /Rg = 31. 79655 + 1. 203454 + 1. 203454 × 31. 79655/100 = 33. 38266 [kΩ] 17. 18064 × 33. 38266 + 31. 79655 × 11. 34946/100 = 0. 9280691 (1 + 17. 18064)33. 38266 + (31. 79655 + 100)11. 34946/100 (1 + 17. 18064)33. 38266 × 100 + (31. 79655 + 100)11. 34946 = 956. 357 [kΩ] 11. 34946 + 31. 79655 + (1 + 17. 18064)1. 203454
1
1+17. 18064 11. 34946
+
1. 203454+24. 12548
1
= 0. 6092449 [kΩ]
com_p_4. cir
1 2 3 4 5 6 7
Common plate voltage amplifier (cathode follower) with 12AU7 (self bias 2) . INCLUDE 12AU7. lib . SUBCKT COMP4 IN OUT X1 4 2 3 12AU7 RK 3 5 1203. 454 RL 5 0 31. 79655k VBB 4 0 200V
22
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
RG 2 5 100k CI 2 IN 1u CO 3 OUT 1000u . ENDS XA1 1 2 COMP4 VI 1 0 DC 0V AC 1V RL 2 0 100Meg XA2 3 4 COMP4 VS 3 0 DC 0V VO 4 0 DC 0V AC 1V . control op print v(a1:4, a1:3) v(a1:2, a1:3) v:a1:bb#branch ac dec 1 1k 1k print abs(v(2)/v(1)) abs(v(1)/i(vi)) abs(v(4)/i(vo)) . endc . END
1 2 3 4 5 6 7 8 9
Circuit: Common plate voltage amplifier (cathode follower) with 12AU7 (self bias 2) v(a1:4, a1:3) = 1. 000000e+02 v(a1:2, a1:3) = -3. 64683e+00 v:a1:bb#branch = -3. 03030e-03 abs(v(2)/v(1)) = 9. 280620e-01 abs(v(1)/i(vi)) = 9. 562632e+05 abs(v(4)/i(vo)) = 6. 092468e+02
2. 4
??
(
??
Co
)
RL Ci E bb ei Rk eo
2. 14:
(
)
23
K i1 ei Rk eg
−
−µeg
+
rp
P
RL G
eo
2. 15:
??eo
= = = = =
(ei
− µeg ) + µ)
rp
RL rp RL
+ RL
= (1 + µ)ei
RL rp
+ RL
(2. 33)
A
(1 (1
+ RL
ii
+ µ)ei r p + RL
ei
Zi Zo
i1
+
ei Rk
=
1
1+µ r p +RL
+
1 Rk
(2. 34) (2. 35)
r p //RL
0 Rs ??
−
Rs Rk eg
−µeg
+
rp
io
eo
2. 16:
io eg
+ µeg r p + R s //Rk = −io (R s //Rk ) =
eo
(2. 36) (2. 37)
io eo Zo
=
− µio (R s //Rk ) r p + R s //Rk = {r p + (1 + µ)(R s //Rk )}io
eo
=
eo io
= r p + (1 + µ)(R s //Rk )
Zo
(2. 38)
2. 4. 1
12AU7
RL
= 33 kΩ,
Rk
= 1. 203454 kΩ
24
Ep
= 203. 64683 V, = 100 V, Eg = −3. 646829 V,
E bb
Ip
= 3. 0303 mA
gm
= 1513. 786 µS, r p = 11. 34946 kΩ, µ = 17. 18064
33
A Zi1 Zi
= = = =
(1
+ 17. 18064) + 33 + 17. 18064
1
1
11. 34946
+ 33
= 13. 52804
11. 34946 1
= 2. 439378 [kΩ] = 805. 8782 [Ω]
2439. 378
+ +
1203. 454
1
Zo
1
11. 34946 1 1 33
= 8. 445022 [kΩ]
2. 4. 2
??
COMG CO X1
12AU7
1
1000 µF
OUT 2 4
RL CI
1 3 IN 1000 µF 3 33 kΩ 4
RL
100 MΩ
EBB
200 V
EI
RK 1203 Ω
0
2. 17:
(
)
com_g. cir
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Common grid voltage amplifier with 12AU7 . INCLUDE 12AU7. lib . SUBCKT COMG IN OUT X1 1 0 3 12AU7 RK 3 0 1203. 454 RL 1 4 33k VBB 4 0 203. 64683V CI IN 3 1000u CO 1 OUT 1000u . ENDS XA1 1 2 COMG VIN 1 0 DC 0V AC 1V RL 2 0 100Meg XA2 3 4 COMG VS 3 0 DC 0V VO 4 0 DC 0V AC 1V . control op print v(a1:1, a1:3) v(a1:3)*-1 v:a1:bb#branch ac dec 1 1k 1k print abs(v(2)/v(1)) abs(v(1)/i(vin)) abs(v(4)/i(vo)) . endc . END
25
1 2 3 4 5 6 7 8 9
Circuit: Common grid voltage amplifier with 12AU7 v(a1:1, a1:3) = 1. 000000e+02 v(a1:3)*-1 = -3. 64683e+00 v:a1:bb#branch = -3. 03030e-03 abs(v(2)/v(1)) = 1. 352690e+01 abs(v(1)/i(vin)) = 8. 058129e+02 abs(v(4)/i(vo)) = 8. 445020e+03
2. 5
2. 5. 1
E p -I p
100 kΩ 25 kΩ Eg
> −0. 7 V
+ 0. 7 V
E g0 E g0
= −(
+ 0. 7) [V]
(2. 39)
E p -I p
Eg
=0
E p min
E p min
ep
≥ 2r p E p = (2/3) E bb √ ≈ Ebb /3 2 ≈ Ebb /5
RL E bb
E p min
≈
E bb /3
12AU7
= 250 V
3 RL
Ep
= 80 V(≈
E bb /3), E g
=0
rp ( ??)
≈ 7. 3 kΩ E p = E bb
= 22 kΩ
E g0 E g0
−18 V
= −9 V = −6 V
26
15
Eg=0V −2 −4 10 −6 A −8 −10 −12 5 −14 Ip0=4. 36 O −16 B Epmin= 74. 0 0 50 100 Ep0=154. 1 150 Ep (V) Epmax=212. 5 200 250 300
Ip (mA)
Ipmax=8. 00
Ipmin=1. 70
−18
0
2. 18: 12AU7
22 kΩ
√
6 I p0 Eg
≈ 4. 24 V
I p max 1/2
=
0
2
E p0 ( E p max A) E p min
= 74. 0 V, I p max = 8. 00 mA
= 212. 5 V, I p min = 1. 70 mA E p min − E p0 = 74. 0 − 154. 1 = −80. 1 V (58. 4 + 80. 1)/2/6 = 11. 54167 10. 4295 kΩ, µ = 16. 61322, A = 11. 27032
Eg ??
= 154. 1 V, I p0 = 4. 36 mA +6 V −6 V E p max − E p0 = 212. 5 − 154. 1 = 58. 4 V
rp
=
Ip
I p0
= 4. 36 mA, Eg0 = −6 V
(2. 40)
Rk
=
−Eg0
I p0 Rk
=
6 4. 36
= 1. 376147 [kΩ]
E12 E bb
= 1. 5 kΩ
E bb
=
256 V
=
250 V ??
2
I p0
< 1/2I p max
27
15
RL=10k
10
Ip (mA)
RL=22k
RL=33k 5 RL=47k
RL=100k
0 −20
−18
−16
−14
−12
−10 Eg (V)
−8
−6
−4
−2
0
2. 19:
12AU7
Ci
Co
Rg 1. 5 kΩ Ck 22 kΩ
256 V
2. 20:
28
2. 5. 2
R
E p -I p
FFT
R ( )
trans. vol
trans_vol. r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
"trans. vol" <function(p, ei, Ebb, Eg0, Rp, Rk=0) { # # p: # ei: # Ebb: # Eg0: # Rp: # Rk: RL <- Rp + Rk # f <- function(ep) { # ep: ip2 <- (Ebb - ep)/RL # ek <- ip2 * Rk # ip1 <- Ip(p, ep, eg-ek) # ip1 - ip2 # 0 } Eg <- ei + Eg0 # ep <- rep(0, length(Eg)) for (i in seq(along=Eg)) { # eg <- Eg[i] ep[i] <- if (Ip(p, Ebb, eg) == 0) Ebb # else uniroot(f, c(0, Ebb))$root } ip <- (Ebb - ep)/RL # ek <- ip * Rk # eo <- ep + ek list(Ip=ip, Eo=eo, Ep=ep, Ek=ek, Eg=Eg)
(
)
}
3
9
Rk 0
11 12
f uniroot (24
0 P-K
)
uniroot f f
P-K
ep ep
0
29
ip2 Rk
G-K ( )
ek ip1 ip1
ip2 trans. vol
( )
ei
1 21
uniroot
23 0
uniroot
Ebb
> trans. vol(t12AU7, ei=0, Ebb=250, Eg=-6, Rp=22e3) $Ip [1] 0. 00435906 # $Eo [1] 154. 1007 # $Ep [1] 154. 1007 # $Ek [1] 0 # $Eg [1] -6 #
(
ei=
)
ei +6 V, 0 V, −6 V
3
> trans. vol(t12AU7, ei=c(6, 0, -6), Ebb=250, Eg=-6, Rp=22e3) $Ip [1] 0. 007998548 0. 004359060 0. 001703476 $Eo [1] 74. 03194 154. 10068 212. 52353 $Ep [1] 74. 03194 154. 10068 212. 52353 $Ek [1] 0 0 0 $Eg [1] 0 -6 -12
E p min , I p max ( )
> Eg <- seq(-19, 0, by=0. 5) > Eg [1] -19. 0 -18. 5 -18. 0 -17. 5 -17. 0 -16. 5 -16. 0 -15. 5 -15. 0 -14. 5 -14. 0 -13. 5 . . . [37] -1. 0 -0. 5 0. 0 > ip <- trans. vol(t12AU7, ei=0, Ebb=250, Eg=Eg, Rp=22e3)$Ip > ip [1] 1. 689226e-05 5. 087075e-05 1. 032984e-04 1. 727899e-04 2. 577371e-04 . . . [36] 6. 957745e-03 7. 295647e-03 7. 645951e-03 7. 998548e-03 > plot(Eg, ip, type="l")
30
??
> trans. vol(t12AU7, ei=0, Ebb=256, Eg0=0, Rp=22e3, Rk=1. 5e3)$Ek [1] 6. 297733
2. 5. 3
E p -I p ?? [. . . ] [46] 0. 0073996938 0. 0075497245 0. 0076997719 0. 0078498346 0. 0079999121 > plot(eg, ip, type="l")
31
??
10 Ip (mA) 0 −20 2 4 6 8
0
20
40
60
80 Eg (V)
100
120
140
160
2. 22:
2. 5. 4
??
??(=
P-K
−Eg ) −Eg
(BOA) E g0 I p0
= −6 V +6 V
E p max
E p0
= 152. 2 V
E g min I p min
= 4. 17 mA = −12 V
( A)
(
O)
= 207. 0 V
I p max
= 1. 41 mA E g max = 0 V
( B)
−6 V
E p min
= 74. 0 V
= 8. 00 mA
R
trans. comg
32
15
Eg=0V −2 −4 10 −6 B −8 −10 −12 5 −14 Ip0=4. 17 O −16
Ip (mA)
Ipmax=8. 00
Ipmin=1. 41 0 Epmin= 74. 0 0 50 100 Ep0=152. 2 150 Ep (V)
A Epmax=207. 0 200 250
−18
300
2. 23:
trans_comg. r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
"trans. comg" <function(p, ei, Ebb, Eg0, Ek0, RL) { # # p: # ei: # Ebb: # Eg0: # Ek0: # RL: f <- function(ep) { # ep: ip2 <- (Ebb - ep)/RL # ip1 <- Ip(p, ep-ek, Eg0-ek) # ip1 - ip2 # 0 } Ek <- ei + Ek0 # ep <- rep(0, length(Ek)) for (i in seq(along=Ek)) { # ek <- Ek[i] ep[i] <- if (Ip(p, Ebb-ek, Eg0-ek) == 0) Ebb else uniroot(f, c(ek, Ebb))$root } ip <- (Ebb - ep)/RL # list(Ip=ip, Eo=ep, Ep=ep-Ek, Ip=ip, Ek=Ek)
(
)
#
}
(14
)
> ek <- seq(0, 12, by=0. 5) > ip <- trans. comg(t12AU7, ei=0, Ebb=250, Eg0=0, Ek0=ek, 22e3)$Ip > ip
33
[1] 0. 007998548 0. 007629136 0. 007262160 0. 006907778 0. 006566853 0. 006237492 . . . [25] 0. 001410539 > plot(ek, ip, type="l")
??
10 Ip (mA) 0 0 2 4 6 8
2
4
6
8
10 Ek (V)
12
14
16
18
2. 24:
2. 6
SRPP
??Rk1 Rk1
SRPP (Shunt Regulated Push Pull) ??
=
0
i eg2 eo ei
= =
r p1
−µ1 eg1 − µ2 eg2 + Rk1 + r p2 + Rk2
(2. 41) (2. 42) (2. 43) (2. 44)
iRk2
= −µ1 eg1 − i(r p1 + Rk1 + Rk2 ) =
eg1
− iRk1
eg1 (r p1
=
ei
+ iRki
+ Rk1 + r p2 + Rk2 )i = −µ1 ei − (µ1 Rk1 + µ2 Rk2 )i
{r p1 + (1 + µ1 )Rk1 + r p2 + (1 + µ2 )Rk2 }i = −µ1 ei
34
V2
Co
Rk2
Ci
V1 E bb Rg eo
ei Eg
2. 25: SRPP
r p2
+ −µ2 eg2 −
eg2 Rk2 i
r p1
+ −µ1 eg1
eg1 ei Rg ek1
eo
−
rK 1
2. 26: SRPP
35
i
eo
A
−µ1 ei r p1 + (1 + µ1 )Rk1 + r p2 + (1 + µ2 )Rk2 r p2 + µ2 Rk2 = −µ1 ei r p1 + (1 + µ1 )Rk1 + r p2 + (1 + µ2 )Rk2 r p2 + µ2 Rk2 = −µ1 r p1 + (1 + µ1 )Rk1 + r p2 + (1 + µ2 )Rk2 =
??
(2. 45)
r p2
+ −µ2 eg2
iu id eg2 Rk2
−
i
r p1
+ −µ1 eg1 −
eg1 Rk1
eo
2. 27: SRPP
id ( r p1
+ Rk1 + Rk2 )id
id
+ µ1 eg1 = + Rk1 + Rk2 = eo − µ1 id Rk1 =
eo r p1
eo r p1
− µ1 id Rk1 + Rk1 + Rk2
= = = = =
eo
iu
+ (1 + µ1 )Rk1 + Rk2 eo − µ2 eg2 eo + µ2 id Rk2 =
r p1 r p2 r p2 eo
+ µ2 r
p1
+(1+µ1 )Rk1 +Rk2 Rk2
r p2
eo
eo r p2 eo
r p1
r p1 + (1 + µ1 )Rk1 + Rk2 + (1 + µ1 )Rk1 + (1 + µ2 )Rk2 r p2 {r p1 + (1 + µ1 )Rk1 + Rk2 }
1
+ µ2
Rk2
Zo Zo
= =
eo iu
+ id
=
1
r p1 +(1+µ1 )Rk1 +(1+µ2 )Rk2 r p2 {r p1 +(1+µ1 )Rk1 +Rk2 }
+
r p1 +(1+µ1 )Rk1 +Rk2
1
r p1
r p2 {r p1 + (1 + µ1 )Rk1 + Rk2 } + (1 + µ1 )Rk1 + r p2 + (1 + µ2 )Rk2
(2. 46)
2. 6. 1
1
12AU7
SRPP E bb
SPICE
= 196. 4884 V,
36
Rk2
= 1. 2 kΩ,
Rg
= 470 kΩ
gm
= 96. 4884 V, Eg = −3. 5116 V, I p = 2. 92632 mA = 1503. 186 µS, r p = 11. 45684 kΩ, µ = 17. 22177
Ep 11. 45684
A Zi Zo
= −17. 22177 = =
470 [kΩ]
11. 45684
+ 17. 22177 × 1. 2 = −12. 3541 + 11. 45684 + (1 + 17. 22177) × 1. 2
+ 1. 2) = 3. 238234 [kΩ] 11. 45684 + 11. 45684 + (1 + 17. 22177) × 1. 2
(−12. 78 (16. 6 kΩ
11. 45684(11. 45684
→ −12. 35)
→ 3. 24 kΩ)
??
X2
12AU7
4
3
RK2 1. 2 kΩ
1 2
VBB 196. 5 V
X1
12AU7
EI
3. 51 V
RG
470 kΩ
0
2. 28: SRPP
(
)
srpp. cir
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SRPP voltage amplifier with 12AU7 . OPTIONS ITL1=200 ITL2=200 . INCLUDE 12AU7. lib X1 1 2 0 12AU7 X2 4 1 3 12AU7 RK 1 3 1. 2k VBB 4 0 196. 4884V RG 2 0 470k VIN 2 0 DC -3. 511599V AC 1V . NODESET V(3)=100V . control op print v(1) v(2) v(4, 3) v(1, 3) i(vbb) tf v(3) vin print all . endc . END
1 2 3 4 5
Circuit: SRPP voltage amplifier with 12AU7 v(1) = 9. 648839e+01 v(2) = -3. 51160e+00
37
6 7 8 9 10 11
v(4, 3) = 9. 648841e+01 v(1, 3) = -3. 51160e+00 i(vbb) = -2. 92633e-03 transfer_function = -1. 23541e+01 output_impedance_at_v(3) = 3. 238233e+03 vin#input_impedance = 4. 700000e+05
2. 6. 2
2
V1 E bb Rk1
= 1. 2 kΩ
V1
= 200 V
11. 45684
A Zi Zo
= −17. 22177 = =
470 [kΩ]
+ 17. 22177 × 1. 2 = −8. 300797 11. 45684 + (1 + 17. 22177) × 1. 2 + 11. 45684 + (1 + 17. 22177) × 1. 2
11. 45684(11. 45684 11. 45684
+ (1 + 17. 22177) × 1. 2 + 1. 2) = 5. 93471 [kΩ] + (1 + 17. 22177) × 1. 2 + 11. 45684 + (1 + 17. 22177) × 1. 2
??
tf
SRPPCF X2
12AU7
SPICE
ac
4
CO
1000 µ 3 OUT 2 4
RK2 1. 2 kΩ
1
VBB
200 V
1 3 IN
CI 1µ RG
470 kΩ
2
X1
12AU7
RL
100 MΩ
EI
5
RK1 1. 2 kΩ
0
2. 29:
SRPP
(
)
srpp_cf. cir
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SRPP voltage amplifier with 12AU7 . OPTIONS ITL1=200 ITL2=200 . INCLUDE 12AU7. lib . SUBCKT SRPPCF IN OUT X1 1 2 5 12AU7 X2 4 1 3 12AU7 RK1 5 0 1. 2k RK2 1 3 1. 2k VBB 4 0 200V RG 2 0 470k CI IN 2 1u CO 3 OUT 1000u . ENDS XA1 1 2 SRPPCF VI 1 0 DC 0V AC 1V RL 2 0 100Meg
38
18 19 20 21 22 23 24 25 26 27 28 29 30 31
. NODESET V(A1:1)=100V XA2 3 4 SRPPCF VS 3 0 DC 0V VO 4 0 DC 0V AC 1V . NODESET V(A2:1)=100V . control op print v(a1:1, a1:5) v(a1:2, a1:5) v(a1:4, a1:3) v(a1:1, a1:3) v(a1:1) v:a1:bb#branch ac dec 1 1k 1k print abs(v(2)/v(1)) abs(v(1)/i(vi)) abs(v(4)/i(vo)) . endc . END
1 2 3 4 5 6 7 8 9 10 11 12
Circuit: SRPP voltage amplifier with 12AU7 v(a1:1, a1:5) = 9. 648840e+01 v(a1:2, a1:5) = -3. 51160e+00 v(a1:4, a1:3) = 9. 648840e+01 v(a1:1, a1:3) = -3. 51160e+00 v(a1:1) = 1. 000000e+02 v:a1:bb#branch = -2. 92633e-03 abs(v(2)/v(1)) = 8. 300174e+00 abs(v(1)/i(vi)) = 4. 694988e+05 abs(v(4)/i(vo)) = 5. 934634e+03
2. 6. 3
SRPP Ip (V2) E bb Rk2 I p Rk2
=
5 mA E g2
= 250 V Rk2 = 1. 2 kΩ = 5 · 1. 2 = 6 V
V2
= −6 V
> uniroot(function(ep) Ip(t12AU7, ep, -6) - 5e-3, c(0, 250))$root [1] 160. 5975
E p2
=
160. 6 V ??
??
X
Ip V2 160. 6/5
Ep
≈
32 kΩ V1
(
r p2
+ (1 + µ2 )Rk2
V1
)
Rk2
E bb V1 Rk
− E p2 − I p Rk2
32 kΩ V1
V1
Rk2
V2 O A I p0 E g2 E g1 V1 E p1 E g1
=
0 (
E g1
= −0. 7 V)
= −6 V
E p1 = − Eg2 = 145. 0 V 141. 2 V, V2
= 3. 19 mA = −I p0 Rk2 = −3. 83 V, V2
39
15
Eg=0V −2 −4 10 −6 −8 Ip (mA) −10 Ipmax=5. 86 5 A X −12 −14
Ip0=3. 19
O
−16
Ipmin=1. 34 0 Eomin= 63. 9 0 50 100 Eo0=145. 0 150 Ep (V)
B Eomax=207. 1 200 250
−18
300
2. 30: SRPP
+6 V E p1 min = 56. 9 V, V2 E p1 min − E g2 min = 63. 9 V I p min = 1. 34 mA, E g2 max = − I p min Rk2 = −1. 60 V, V2
V1 SRPP
( V1
= 5. 86 mA, E g2 min = − I p max Rk2 = −7. 03 V, V2 A) V1 −6 V E p1 max = 205. 5 V, V2 E p1 max − E g2 max = 207. 1 V
I p max SRPP
V1
( E p1
B)
=
E p2
E p1
>
E p2 2 V1 R
E p1
<
E p2
SRPP
trans. srpp
trans_srpp. r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
"trans. srpp" <function(p1, ei, Ebb, Eg1, Rk1=0, Rk2, p2=p1) { # SRPP # p1: V1 # p2: V2 # ei: # Ebb: # Eg1: V1 ( ) # Rk1: V1 # Rk2: V2 # # $Ip: # $Eg1: V1 # $Ep1: V1 # $Eg2: V2 # $Ep2: V2
40
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
# $Eo:
(
V2
)
get. ep2 <- function(ip) { # ip V2 if (ip == 0) # return(0) eg2 <- -ip * Rk2 uniroot(function(ep2) Ip(p2, ep2, eg2) - ip, c(0, Ebb))$root } f <- function(ip) { ep2 <- get. ep2(ip) # V2 eg1 <- eg - ip * Rk1 # V1 ep1 <- Ebb - ip * (Rk1 + Rk2) - ep2 ip1 <- Ip(p1, ep1, eg1) ip - ip1 } # V2 Ipmax <- uniroot(function(ip) Ip(p2, Ebb-ip*(Rk1+Rk2), -ip*Rk2) - ip, c(0, Ip(p2, Ebb, 0)))$root Eg <- ei + Eg1 ip <- ep2 <- rep(0, length(Eg)) for (i in seq(along=Eg)) { eg <- Eg[i] cat(eg, "") ip[i] <- if (Ip(p1, Ebb, eg) == 0) 0 else uniroot(f, c(0, Ipmax*0. 99), tol=1e-8)$root ep2[i] <- get. ep2(ip[i]) # } cat("\n") eg2 <- -ip * Rk2 # eg1 <- Eg - ip * Rk1 # ep1 <- Ebb - ip * (Rk1 + Rk2) - ep2 # eo <- ip * (Rk1 + Rk2) + ep1 # V2 list(Ip=ip, Eo=eo, Eg1=eg1, Ep1=ep1, Eg2=eg2, Ep2=ep2)
}
SRPP
> trans. srpp(t12AU7, ei=0, Ebb=250, Eg1=-6, Rk2=1. 2e3) -6 $Ip # [1] 0. 003193013 $Eo # [1] 144. 9966 $Eg1 # [1] -6 $Ep1 # [1] 141. 165 $Eg2 # [1] -3. 831616 $Ep2 # [1] 105. 0034
> ei <- c(0, 6, -6) > z <- trans. srpp(t12AU7, ei=ei, Ebb=250, Eg1=-6, Rk2=1. 2e3) -6 0 -12 > z$Ip [1] 0. 003193013 0. 005858398 0. 001339306 > z$Eo [1] 144. 99661 63. 93202 207. 14122
41
> eg <- seq(-20, 0, by=0. 5) > ip <- trans. srpp(t12AU7, ei=0, Ebb=250, Eg1=eg, Rk2=1. 2e3)$Ip -20 -19. 5 -19 . . . -2. 5 -2 -1. 5 -1 -0. 5 0 > plot(eg, ip, type="l")
??
Ip (mA)
0 −20
1
2
3
4
5
6
−18
−16
−14
−12
−10 Eg (V)
−8
−6
−4
−2
0
2. 31: SRPP
2. 7
??V1 (cascode) V2 (V1 ) V2 V2 V1 V2
( ) ??
eo e p1 eg2
=
(−µ1 eg1
− µ2 eg2 )
RL r p1
+ r p2 + RL
r p1 r p1
(2. 47)
= −µ1 eg1 + (µ1 eg1 + µ2 eg2 ) = −e p1
42
+ r p2 + RL
(2. 48) (2. 49)
RL Co V2
Ci
V1 eo E g2 Rg E bb
ei Eg
2. 32:
r p1
−µ2 eg2 − +
r p2
+
ei Rg eg1
−µ1 eg1 −
e p1
RL
eo
2. 33:
eg2 (r p1
= µ1 eg1 − (µ1 eg1 + µ2 eg2 )
r p1 r p1
+ r p2 + RL )eg2
+ r p2 + RL = µ1 (r p1 + r p2 + RL )eg1 − (µ1 eg1 + µ2 eg2 )r p1 = µ1 (r p2 + RL )eg1 µ1 (r p2 + RL ) = eg1 (1 + µ2 )r p1 + r p2 + RL =
r p2 + RL RL eg1 + µ2 )r p1 + r p2 + RL r p1 + r p2 + RL r p2 + RL RL = −µ1 eg1 1 + µ2 (1 + µ2 )r p1 + r p2 + RL r p1 + r p2 + RL (1 + µ2 )(r p1 + r p2 + RL ) RL = −µ1 eg1 · (1 + µ2 )r p1 + r p2 + RL r p1 + r p2 + RL (1 + µ2 )RL = −µ1 eg1 (1 + µ2 )r p1 + r p2 + RL
{(1 + µ2 )r p1 + r p2 + RL }eg2
eg2
eo
−µ1 eg1 − µ2 µ1
(1
A
= −µ1 (1 + µ2 )
RL (1
+ µ2 )r p1 + r p2 + RL
(2. 50)
2 Zi2
Zo1
= r p1
=
(r p2
+ RL )/(1 + µ2 )
r p2 +RL
A1 Zi2 r p1
1+µ2
A1
= −µ1
+ Zi2
= −µ1
r p1
+
r p2 +R L 1+µ2
= −µ1
+ RL (1 + µ2 )r p1 + r p2 + RL
r p2
(2. 51)
43
A2
(??)
A2
= (1 + µ2 )
RL r p2
+ RL
(2. 52)
A
A
=
A1 A2
= −µ1
(??)
+ RL RL RL (1 + µ2 ) = −µ1 (1 + µ2 ) (1 + µ2 )r p1 + r p2 + RL r p2 + RL (1 + µ2 )r p1 + r p2 + RL
r p2
(2. 53)
Zo
(
(??))
Zo Zi
= {r p2 + (1 + µ2 )r p1 }//RL =
Rg
(2. 54) (2. 55)
2. 7. 1
12AU7
SPICE E bb
=
250 V,
Rg
=
470 kΩ,
RL
= 22 kΩ, V1 E g1 = −3 V, V2 E g2 = 72 V = 77. 89354 V, Eg1 = −3 V, E p2 = 125. 5693 V, Eg2 = −5. 893544 V, I p = 2. 115324 mA gm1 = 1347. 921 µS, r p1 = 12. 77094 kΩ, µ1 = 17. 21421, gm2 = 1129. 799 µS, r p2 = 14. 11705 kΩ, µ2 = 15. 94943
E p1 A Zi Zo
= −17. 21421(1 + 15. 94943) = =
470 [kΩ] 1
14. 11705+(1+15. 94943)12. 77094 1
22 (1
+ 15. 94943)12. 77094 + 14. 11705 + 22 = 20. 08375 [kΩ]
= −25. 41387
+
1 22
2. 7. 2
??
cascode. cir
1 2 3 4 5 6 7 8 9 10 11 12
Cascode voltage amplifier with 12AU7 . INCLUDE 12AU7. lib X1 1 2 0 12AU7 X2 3 4 1 12AU7 RL 3 5 22k VBB 5 0 250V VG2 4 0 72V RG 2 0 470k VI 2 0 DC -3V AC 1V . NODESET V(1)=78V . control op
44
5
RL
22 kΩ 3 4
X2 12AU7
X1 12AU7
2
1
VG2
72 V
VBB
250 V
VI
3V
RG 470 kΩ
0
2. 34:
(
)
13 14 15 16 17
print v(1) v(2) v(3, 1) v(4, 1) v(3) i(vbb) tf v(3) vi print all . endc . END
1 2 3 4 5 6 7 8 9 10 11 12
Circuit: Cascode voltage amplifier with 12AU7 v(1) = 7. 789318e+01 v(2) = -3. 00000e+00 v(3, 1) = 1. 255705e+02 v(4, 1) = -5. 89318e+00 v(3) = 2. 034636e+02 i(vbb) = -2. 11529e-03 transfer_function = -2. 54139e+01 output_impedance_at_v(3) = 2. 008375e+04 vi#input_impedance = 4. 700000e+05
2. 7. 3
V2 0V E g2 V2 V2 E g2 V1 V1 V1 V2 ( ??) E bb
− Eg2
(A2O2B2) (A1O1B1)
µ
gm
gm
V2
E g2
E g2
45
15
Eg=0V −1 −2 −3 −4 10 −5 −6 −8 Ip (mA) −10 −12 5 Ipmax=5. 24 A2 A1 A3 −14
−16 Ip0=2. 12 Ipmin=0. 49 0 0 50 O1 B1 100 O2 B2 O3 −18 Eomin=134. 6 150 Ep (V) B3 Eo0=203. 5 Eomax=239. 3 200 250 300
2. 35:
V2 (V1 V1 ) E g0
E g0
=0
y
=
1V V2 E g0
=0
0. 6
V1
gm ei
gm
V1
E g0
=
1V
E g2
V1 E g1
O Eg V2 ( O3 ) 203. 5 V A1) V2 I p min B3 E o max
4 Vp−p
= −3 V
= −3 V
O1
O1
2. 12 mA O2 I p max
+2 V
A3 E o min (
= 5. 24 mA
(
= 134. 6 V
−2 V
V2 R
= 0. 49 mA
B1)
= 239. 3 V trans. cascode
trans_cascode. r
1 2 3 4 5 6 7 8
"trans. cascode" <function(p1, ei, Ebb, Eg1, Eg2, RL, Rk=0, p2=p1) { # # p1: V1 # p2: V2 # ei: # Ebb:
46
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# # # # # # # # # # #
Eg1: V1 Eg2: V2 RL: Rk: V1 $Ip: $Eo: $Eg1: $Ep1: $Eg2: $Ep2: (
(
)
V1 V1 V2 V2
V2
)
get. ek2 <- function(ip) { # ip # V2 if (ip == 0) # V2 return(Ek2max) # ep2 <- Ebb - ip * RL # V2 if (ep2 <= 0) return(0) uniroot(function(ek) Ip(p2, ep2-ek, Eg2-ek) - ip, c(0, Ek2max), tol=1e-8)$root } f <- function(ip) { ep1 <- get. ek2(ip) # ek1 <- ip * Rk # ip1 <- Ip(p1, ep1-ek1, eg-ek1) ip - ip1 } V1 V1
?
}
# V2 (Ip=1nA) Ek2max <- uniroot(function(ek) Ip(p2, Ebb-ek, Eg2-ek) - 1e-9, c(Eg2, Ebb))$root cat("Ek2max=", Ek2max, "\n", sep="") Eg <- ei + Eg1 ip <- ek2 <- rep(0, length(Eg)) for (i in seq(along=Eg)) { eg <- Eg[i] cat(eg, "") ip[i] <- if(Ip(p1, Ek2max, eg) <= 1e-9) 0 else uniroot(f, c(0, (Ebb-Eg2)/RL), tol=1e-8)$root ek2[i] <- get. ek2(ip[i]) } cat("\n") eo <- Ebb - ip * RL ep2 <- eo - ek2 eg2 <- Eg2 - ek2 ep1 <- ek2 - ip * Rk eg1 <- Eg - ip * Rk list(Ip=ip, Eo=eo, Ep1=ep1, Eg1=eg1, Ep2=ep2, Eg2=eg2)
> trans. cascode(t12AU7, ei=c(0, 2, -2), Ebb=250, Eg1=-3, Eg2=72, RL=22e3) Ek2max=85. 30461 -3 -1 -5 $Ip [1] 0. 0021153245 0. 0052434383 0. 0004876885 $Eo # (V2 ) [1] 203. 4629 134. 6444 239. 2709 $Ep1 [1] 77. 89354 72. 50324 82. 12975 $Eg1 [1] -3 -1 -5 $Ep2
47
[1] 125. 56932 62. 14111 157. 14110 $Eg2 [1] -5. 8935443 -0. 5032431 -10. 1297507
> eg <- seq(-7, 0, by=0. 25) > ip <- trans. cascode(t12AU7, ei=0, Ebb=250, Eg1=eg, Eg2=72, RL=22e3)$Ip Ek2max=85. 30461 -7 -6. 75 . . . -0. 75 -0. 5 -0. 25 0 > plot(eg, ip, type="l")
??gm ( 0. 6 gm )
Ip (mA)
0 −7
2
4
6
8
−6
−5
−4 Eg (V)
−3
−2
−1
0
2. 36:
2. 8
Rg2 ??Rg2
= 100 kΩ
RL 2
48
15
Eg=0V −2 −4 10 −6 Ipmax=8. 56 Ip (mA) A −8 −10 −12 5 −14 Ip0=4. 36 O −16
Ipmin=1. 42 0 Epmin= 78. 3 0 50 100 Ep0=154. 1 150 Ep (V)
B Epmax=207. 1 200 250
−18
300
2. 37:
( RLac
2
)
Rg2
RL
= RL //Rg2 trans. vol
E bbac E bbac RLac
=
E p0
+ I p0 RLac
(2. 56)
??
> z0 <- trans. vol(t12AU7, ei=0, Ebb=250, Eg0=-6, 22e3) > RLac <- 22e3 %p% 100e3 # %p% > RLac # [1] 18032. 79 > Ebbac <- z0$Ep + z0$Ip * RLac # > Ebbac [1] 232. 7067 > ei <- c(0, 6, -6) > trans. vol(t12AU7, ei=ei, Ebb=Ebbac, Eg0=-6, Rp=RLac) $Ip [1] 0. 004359060 0. 008563391 0. 001418526 $Eo [1] 154. 10068 78. 28488 207. 12670 $Ep [1] 154. 10068 78. 28488 207. 12670 $Ek [1] 0 0 0 $Eg [1] -6 0 -12
49
2. 9
(
)
50
3
P-K ( )
3. 1
P-K
P-K
(
??(2) )
E bb E bb
Rp
Rp
Rg ei Rk
ep
ek E bb
Rk
(1)
(2)
3. 1: P-K
1 2 1/2
(gm
)
3. 1. 1
P-K Zk , Z p ??
ek ep
= −iZk = =
iZ p i(r p
(3. 1) (3. 2)
−µeg
+ Zk + Z p )
(3. 3)
51
−
ek Zk
−µeg
+
rp
i
Zp
ep
3. 2: P-K
ei
=
eg
+ ek
(3. 4)
eg
=
ei
− ek = ei + iZk + Zk + Z p )
−µ(ei + iZk ) = −µei
i
i(r p
= {r p + (1 + µ)Zk + Z p }i −µei = r p + (1 + µ)Zk + Z p = −µei = µei
Zp rp
ep
+ (1 + µ)Zk + Z p
Zk
(3. 5)
ek
rp
+ (1 + µ)Zk + Z p
(3. 6)
Ap
= −µ = µ
Z
Zp rp
+ (1 + µ)Zk + Z p
Zk
(3. 7)
Ak
rp
+ (1 + µ)Zk + Z p
( Z
(3. 8)
Zk
= Zp
)
|A| = µ
rp
+ (2 + µ)Z
(3. 9)
3. 1. 2
??
−
ek Zk
−µeg
+
rp
i2 i1 Zp eo
3. 3: P-K
i1
=
eo Zp
(3. 10)
52
i2 (r p
+ Zk ) = µeg + eo = −µek + eo = −µi2 Zk + eo = = = =
eo eo rp
{r p + (1 + µ)Zk }i2
i2
+ (1 + µ)Zk
eo
Zo p
i1
+ i2
=
1
1 Zp
+
r p +(1+µ)Zk
1
Z p //{r p
+ (1 + µ)Zk }
(3. 11)
??
i1 − i2 eo Zk Zp
−µeg
+
rp
3. 4: P-K
i1 (r p
+ Zp)
i2 i1
= = = =
eo eo Zk
− µeg = (1 + µ)eo
(3. 12) (3. 13)
+µ eo rp + Zp
1 eo i1
Zok
+ i2
=
1
1 Zk
+
1+µ r p +Z p
(3. 14)
3. 1. 3
12AU7
P-K Eg
E bb
=
250 V,
Rk
=
Rp
=
22 kΩ,
= −6 V E p = 134. 2252 V, I p = 2. 63125 mA gm = 1250. 989 µS, r p = 12. 88682 kΩ, µ = 16. 12127
22 12. 88682
| A| =
Zo p Zok
= 0. 8617758 + (2 + 16. 12127)22 = 22//{12. 88682 + (1 + 16. 12127)22} = 20. 82397 [kΩ] =
1
1 22
16. 12127
+
12. 88682+22
1+16. 12127
= 1. 864904 [kΩ]
3. 1. 4
SPICE ??
53
4
RP X1
12AU7
22 kΩ 1
2
VBB
250 V
VI
42. 7 V
RG
470 kΩ
3
RK
22 kΩ 0
3. 5: P-K
(
)
pk. cir
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
P-K phase inverter with 12AU7 . INCLUDE 12AU7. lib X1 1 2 3 12AU7 RP 1 4 22k RK 3 0 22k *CP 1 0 0. 01u *CK 3 0 0. 01u *CP 1 0 220p *CK 3 0 200p VBB 4 0 250V RG 2 0 470k VI 2 0 DC 51. 88741V AC 1V . control op print v(1, 3) v(2, 3) i(vbb) tf v(1) vi print all tf v(3) vi print all *ac dec 10 1 1meg *plot db(v(1)) db(v(3)) ylimit -5 0 . endc . END
1 2 3 4 5 6 7 8 9 10 11 12
Circuit: P-K phase inverter with 12AU7 v(1, 3) = 1. 342252e+02 v(2, 3) = -6. 00000e+00 i(vbb) = -2. 63125e-03 transfer_function = -8. 61776e-01 output_impedance_at_v(1) = 2. 082397e+04 vi#input_impedance = 4. 700000e+05 transfer_function = 8. 617758e-01 output_impedance_at_v(3) = 1. 864904e+03 vi#input_impedance = 4. 700000e+05
3. 1. 5
P-K
54
R, Z (??)
C P-K
= R//C
Z
= 1/(1/R + jωC ) = R/(1 + jωCR)
1 r p /Z
|A| = µ
Z rp
+ (2 + µ)Z
1 rp
=µ
+ (2 + µ)
R rp
= µ 1+ jωCR
R
+ (2 + µ)
R
=µ
+ (2 + µ)R + jωCr p R
+(2+µ)R )
(3. 15)
rp R
= µ =
{r p + (2 + µ)R}(1 + jωC r µR · + (2 + µ)R
1 1
p
rp
+ jωC r
rp R
p
+(2+µ)R
Zo
Zo
=
rpR rp
+ (2 + µ)R
Zo
(3. 16)
= 688. 8756 [Ω]
??
100 pF
0. 01 µF
100 pF 0. 01 µF, 0. 01 µF 100 pF
100 pF,
0. 01 µF
220 pF, ??4.
( ( ( ( ) Pd ) E g min
) E p max ) I p max
??
Ip I p max
I p max
Pd
E p max
E gmin E p max Ep
5. 24:
C
2 B OTL
5. 8. 1
??
100
Ci Zp RL
Ci Zp RL
Rg ei Eg E bb ei Rg Rk Ck E bb
(1)
(2)
5. 25:
??Zp
1
6EM7
2
E p0
Zp
= 2. 5 kΩ
??
= 200 V, I p0 = 50 mA r = 146. 8 Ω
150
Eg=0V
−10 −20
DC load line (146. 8ohm)
AC load line (2. 5kohm)
−30 Ipmax=104. 5 100 A( 63. 8, 104. 5) −40 −50 Ip (mA) −60 −70 50 O(200. 0, 50. 0) −80
−90 Ipmin= 14. 5 D 0 Epmin= 63. 8 0 50 100 150 C(207. 3, 0) 200 Ep (V) 250 Epmax=288. 8 300 350 400 450 B(288. 8, 14. 5) −100
5. 26: 6EM7
E p0
= 200 V
0. 05
× 146. 8 = 7. 34 [V] =
207. 3 V C
E bb
E p0
=
200 V, I p0
=
50 mA
E g0
= −29. 5 V 0V −29. 5 × 2 = −59 V
101
E p max
= 0V = 289. 9 V, I p min = 14. 0 mA
Eg ??
E p min
=
64. 5 V, I p max
=
104. 2 mA
Eg
= −59 V
??
Eg (V) Ep (V) Ip (mA)
20
40
60
80
100
100
150
200
250
−60
−40
−20
0
5. 27: 6EM7
Ip (mA)
0
20
40
60
80
100
120
−50
−40
−30 Eg (V)
−20
−10
0
5. 28: 6EM7
( ?
)
102
5. 8. 2
( ??i(t) i(t) (ω f e(t) )
=
I sin ωt
(5. 61)
ω = 2π f ) = i(t)R =
IR sin ωt p(t) (5. 62)
p(t) sin
2
= e(t)i(t) = i2 (t)R =
I R sin
2
2
ωt
(5. 63)
α = (1 − cos 2α)/2
p(t)
=
I R ??
2
1
− cos 2ωt
2
(5. 64)
2
i(t)
e(t)
R
5. 29:
(
)
e, i, p
p(t)
e(t) P i(t)
O
π ω
2π
ω
t
5. 30:
(
) 2π/ω
P
p(t)
1
2π
ω P = 2π
ω
0
ω 2 p(t) dt = I R 2π
2π
ω
1
− cos 2ωt
2 0
dt
(5. 65)
0
P
=
ω 2 I R 2π
2π
ω
1 2
dt
=
I R 2
2
(5. 66)
0
103
Irms P
=
Irms R
2
(5. 67)
Irms R Irms 1/
2
= =
I R 2 I
2
√
2
(5. 68)
√
2
I E 1/
√
2
1/ 2 I2
√
2 I1 i(t) 2
i(t)
=
I1 sin ωt
+ I2 sin(2ωt + θ)
)
(5. 69)
θ
2
(
P
= =
R
ω 2π ω 2π
2π
ω
i (t) dt
0
2π
2
ω
R
{I1 sin ωt + I2 sin(2ωt + θ)}2 dt
2π
0 2 I1
ω = R 2π
1
ω
2π
sin
0
2
ωt dt + I1 I2
0
ω
2π
sin ωt sin(2ωt
+ θ) dt +
2 I2
ω
sin (2ωt
2
+ θ) dt
0
3
π/ω
sin α
2
+ sin β =
cos(α
− β) − cos(α + β)
2
2π
ω
2π
sin ωt sin(2ωt
+ θ) dt =
0
ω
cos(−ωt
− θ) − cos(3ωt + θ)
2
dt
(5. 70)
0
cos(α
+ β) = cos α cos β − sin α sin β
2π
ω
cos(−ωt
2π
− θ) − cos(3ωt + θ)
2
dt
2π
0
=
0
ω
cos −ωt cos −θ
− sin −ωt sin −θ dt −
0
ω
cos 3ωt cos θ
− sin 3ωt sin θ dt
0
(5. 71)
cos nωt P P
2
sin nωt
2 2 2
=R
I1 2
+
I2 2
=
I1 R 2
+
I2 R 2
(5. 72)
104
2
5. 8. 3
2
2
( ??
)
f,
2
h2
2 Ip 2 0)
±90
2 (
◦
) I pavg I pavg
(
− h2
I p0
Ip I p max
I p max + I p min 2
f h2
I pavg I p0
I p min
t
5. 31: 2
I p max I p max I p min I p min (??) (??) I p max
=
I p0
+
f
+ 2h2
(5. 73)
=
I p0
−
f
+ 2h2
(5. 74)
− I p min
f
= =
2f I p max
− I p min
2
(5. 75)
(??)
(??) I p max
+ I p min
h2
= =
2 I p0
I p max
+ 4h2 + I p min − 2I p0
4
(5. 76)
105
Po
Po
=
(f
2
+ h2 )R 2
2
(5. 77)
6EM7
f h2
= =
104. 2 104. 2
− 14. 0
2
= 45. 1 [mA] = 4. 55 [mA]
+ 14. 0 − 2 × 50. 0
4
Po 2 1% 2
=
(0. 0451
2
+ 0. 004552 ) × 2500
2 ( ) 10%
= 2. 57 [W]
Po
=
f R 2
2
=
( I p max
− I p min )2 Z p
8
(5. 78)
6EM7
Po 1%
=
0. 0451
2
× 2500
2
= 2. 54 [W]
( I p max
− I p min )Z p =
E p max
− E p min
Po ??
=
( E p max
− E p min )(I p max − I p min )
8 1/4
(5. 79)
ABD
5. 8. 4
f D h2 f
I p max + I p min −2 I p0
,
2
h2
D
=
=
4 I p max − I p min 2
=
I p max
+ I p min − 2I p0 = 2( I p max − I p min )
I p max + I p min 2
− I p0
I p max
− I p min
(5. 80)
I p max + I p min 2
I p max
I p min I pavg
2 h2
+
I p0 peak-peak p-p I p max h2 2
− I p min
I pavg I p0 2 h2
106
6EM7
D
=
4. 55 45. 1
= 10. 1 [%]
5. 8. 5
(
??)
G rp P
+
ei Rg eg
−µeg −
K
Zp
eo
5. 32:
1 Zo
A
2
A
= −µ =
rp
Zp rp
+ Zp + r2
1 2
(5. 81)
Zo
+ r1
n2
(5. 82)
2 DF
2
DF
≡
Zo
(5. 83)
6EM7
µ = 5. 0255,
rp
=
931. 21 Ω, gm
=
5397 m§
A Zo
= −5. 0255 =
931. 21
2546 931. 21
+ 2546
= −3. 680
(5. 84) (5. 85)
+ 146. 8
16. 71322
+ 0. 66 = 4. 519 [Ω]
2
107
5. 8. 6 5. 8. 7 5. 8. 8 5. 8. 9 5. 8. 10 2 NFB
5. 9
5. 9. 1
1 ??1
I11 P1 E 11
5 kΩ 1
= 40 mA
I2
= 100 V
B
E2
E 12
= 100 V
P2 I12
= 40 mA
5. 33:
B 1 Z1 5 kΩ 2
I1 (mA) 200
1
Z1
=
100
+ 100
0. 04
= 5000 Ω
( I1
(5. 86)
E 11 - I1 200 × 0. 04
=
I11
+ I12 )
??
A
= 8W
(
)
100 80 mA 0
A
−100 −200 −300 −200 −100
0 100 200 300 E 11 (V)
5. 34:
100 0. 08
= 1250 Ω
(5. 87)
108
E 11 - I1 Z1 1 /4 E 11 - I1 (2 ) P1 - P2
1
Z1
=
E 11
+ E12
I1 /2
=4
E 11 I1
= 4Z s
I1
(5. 88)
Zs
E 11 - I1 I1 I1 E 11 1 Zs
=
I11
+ I12
= = =
I11 I11
+ I12 + +
I12 E 11 1 Z12 1 (5. 89)
E 11 1 Z11
(
1 1 Z2 2 1 (??) E 11 2 I11 I12
1/4) I11 Po E2 I1 2 n E2 2 E 11 2 E 11 I1 I1 I2 2
=
I12 2
2 E2
=
I11
+ I12
I1
1 I1
I11 , I12
5. 10 5. 11 SEPP
109
6
(
)
6. 1
AM ,
1
TL, TH
A
= = =
AM
1 1
+ − +
jωT L
1
· ·
1 1
+ jωT H
1
(6. 1)
AM
1 1 j
ωT L
TH TL
1
1
+ jωT H
ωT L )
1
AM
1 (1 )
+ j(ωT H −
TL
TH
T H /T L
≈0
A
≈
AM
1 1
+ j(ωT H −
ωT L )
A
1
F A
= ≈ = = ≈ =
A 1
+ Aβ
AM
1
+ j(ωT H −
ωT L )
1
+ AM β
ωT L )
1 1
AM 1
+ A M β + j(ωT H − · ·
1 1 1
=
AM F
+ j(ωT H −
ωT L )
1
AM F AM F AM F
+ j(ωT H /F −
1
ωFT L )
1
+ −
TH F2TL
+ j(ωT H /F − ·
TL 1 1
ωFT L )
(6. 2)
·
1 1 j
ωFT L
1
+ jωT L /F
FT L F F TH
A M /F , 1/ F AM
=
= T H /F
??
= 1000 (60 dB), F = 10 (20 dB)
6. 2
AM ,
2
T L1 , T L2 AL AL 1 1
=
AM
+
jωT L1
1
·
1 1
+
jωT L2
1
110
Gain (dB)
20 1
30
40
50
60
10
100
1k Frequency (Hz)
10k
100k
1M
6. 1:
=
x
AM
1 1
−
j
ωT L1
1
·
1 1
−
j
ωT L2
1
= 1/ωT L1 , n = T L2 /T L1
AL
= =
AM
1 1
− −
jx
·
1 1
−
j
x n
(6. 3)
AM
1 (1
x2 n
)
−
jx(1
+
1 n
(6. 4) )
β
AL
AL
= =
AL 1
+ AL β
AM
(6. 5)
(1
−
x2 n
)
−
jx(1 AM
+ −
1 n
)
+ AM β +
1 n
(6. 6)
=
(1 1
+ AM β −
x2 n
(6. 7) )
)
jx(1
+ AM β =
FM AL
=
(F M
AM
−
x2 n
)
−
jx(1
+
1 n
(6. 8) )
AM ( )
| AL | = =
2
AM (F M
1
(6. 9)
−
x
2
n
)
2
+x
2
(1
+
1 2 ) n
X
x
(??)
FM
−
X n
2
+X
1
+
1 n
2
(6. 10)
111
= = = =
1 n2 1 n2 1 n
2
X
2
+
1
+
1 n
2
−
2F M n
X
+ F2 M
(6. 11) (6. 12)
X
2
+ (n2 + 2n + 1 − 2nF M )X + n2 F 2 M −
2nF M
X
− (n + 1)2
2
2
2
+ n2 F 2 − M
(n
2nF M
− (n + 1)2
2
2
(6. 13)
1 n2
X
−
2nF M
− (n + 1)2
2
+
+ 1)2
n
FM
−
(n
+ 1)4
4n2
(6. 14)
( x
| AL |
) 1 T L1 x p 1 T L1 nF M
)
X
=
xp
≡
nF M
− (n + 1) /2
2
= nF M − (n + 1)2 /2 ωp
(
ωp =
=
(6. 15)
−
(n+1)2 2
| AL p | | AL p | = =
A M /F M FM
(n+1)2 n
AM
1
(n+1)2 n
FM
−
(n+1)4 4n2
(6. 16)
AM
P 1
(n+1) nF M
2
P
=
| AL p |
AM
=
= −
(n+1)4 4n2
FM
−
(n+1)4 4n
2 2 F M
(6. 17)
1
N
=
(n
+ 1)2 /n
N FM
−
N
2 2
4F M
≥ ≥ ≤
1
(6. 18)
N FM FM
2
−
N
2
4 N
2
FM 0 0 N 2
2
(6. 19)
− N FM +
FM
4
2
(6. 20) (6. 21)
−
N 2
≤ =
FM (??) ??1
=
(n
+ 1)2
2n
(6. 22)
n (??) 1 P2 FM
P
FM
2
−
n
(n
+ 1)2
n
FM
+
(1
(n
+ 1)4
4n2
= =
0
(6. 23)
(n+1)
2
FM
=
±
(n+1)4 n2
− 1/P2 )
P (n
2
+ 1)2
2/ P
2
2n
(1
±
1
− 1/ P2 )
(6. 24)
112
F=0dB 6dB
−10
0
12dB 15dB 20dB 26dB 30dB
Gain (dB)
−50 0. 05
−40
−30
−20
0. 1
1 f/fc
10
20
Phase (deg)
100
150
0
50
30dB 26dB
20dB 15dB 12dB
6dB
F=0dB
0. 05
0. 1
1 f/fc
10
20
6. 2:
1
113
35
11dB 10dB
30
9dB 8dB 7dB
25
6dB 5dB
Feedback (dB)
4dB 3dB
20
15
2dB 1dB
10
P=0dB 5 0 0. 01
0. 1
1 Stagger ratio
10
100
6. 3:
12 xp 2 4 6 8 10
20 n=1 2 0 5 4 10 Feedback (dB) 8 10 15 20 25 25
0
15
6. 4:
(n
≥ 1)
114
n=1
4
0. 8
3
0. 4
xp
2
0. 2
1
0. 1 0. 067 0. 05 0. 04
0 0
5
10 Feedback (dB)
15
20
25
6. 5:
(n
≤ 1)
??
??, ??
n F
=1
T L1
= 10 (20 dB)
??xp
??
= T L2 = 25 µF · kω(ms) P = 4. 44 dB
= 2. 83
(6. 25)
fp
= =
ωp 1 = = 2. 25 [Hz] 2π 2πT L1 x p
10 xp T L2
n P
= 0. 74 dB n = 0. 1
xp ??
= 6. 28
= 250 µF · kΩ f p = 1. 01 [Hz]
P 3
T L2 = 2. 5 µF · kΩ = 0. 628 f p = 10. 1 [Hz]
= 0. 74 dB
6. 3
AM ,
3
T L1 , T L2 , T L3 AL AL
=
AM
1 1
+
jωT L1
1
·
1 1
+
jωT L2
1
·
1 1
+
jωT L3
1
115
−10 −15. 56 −20 Response (dB) −30 −19. 26
10
n=1
0. 1
−40
−50
1. 01 0. 2 1
2. 25
10. 10 10 20
Frequency (Hz)
6. 6:
(F
= 10)
=
x
AM
1 1
−
j
ωT L1
1
·
1 1
1
−
j
ωT L2
1
1
−
j
ωT L3
1
= 1/ωT L1 , T L2 = nT L1 , T L3 = mT L1
AL
= =
AM
1 1
−
jx
·
1 n
1 1
−
1 m
jx/n
·
1 1 1
−
jx/m
AM
1
−x
2
(
+
+
AL
1 nm
)
−
jx(1
+
1 n
+
1 m
−
x2 nm
)
β
AL
= =
AL 1
+ AL β
AM
1
−x
2
(
1 n
+
1 m
+
1 nm
)
−
jx(1 AM
+ −
1 n
+
1 m
−
1 n
x2 nm
)
+ AM β −
x2 nm
=
1 1
1 + + A M β − x2 ( n
1 m
+
1 nm
)
jx(1
+
+
1 m
)
+ AM β =
AL
FM
=
FM
AM
− x2 ( n +
1
1 m
+
1 nm
)
−
jx(1
+
1 n
+
1 m
−
x2 nm
(6. 26) )
| AL | | AL | = =
AM FM X x
2 1 − x2 ( n + 1 m
1
+
1 nm
)
2
(6. 27)
+ x2 (1 +
1 n
+
1 m
−
x2 nm
)2
(??)
FM
−X
1 n
+
1 m
+
1 nm
2
+X
1
+
1 n
+
1 m
−
X nm
2
116
=
X
3
n2 m2
+ +
1 n
3
1 n
+
1
1 m
2
+
1 nm
2
−2
1 n
1 1
+
1 n
+
1
1
1
m nm X
X
2
+ =
1
1 1
+
m
− 2F M
+
m
+
nm
+ F2 M
(6. 28)
n m2
2
[X
+ (n2 + m2 + 1)X 2 + {(nm + n + m)2 − 2F M nm(n + m + 1)}X + n2 m2 F 2 ] M
−a +
√
a2
− 3b > −b >
0 0 0
2 F M nm(n
+ m + 1) − (nm + n + m)2
FM
> >
+ n + m)2 2nm(n + m + 1)
(nm
x
2
=
X
=
−a +
√
a2
− 3b
3
=
−a +
3
√
D (6. 30)
| AL p | | AL p | = =
AM
2 27
nm D(a
−
√
D)
−
1 9
ab
+c
AM
nm
−2 DX − 9
1 9
ab
+c
1
f ( x)
=
x
3
+ ax2 + bx + c
f ( x) x
f ( x)
=0
x
= =
3x
+ 2ax + b = 0 √ −a ± a2 − 3b
3
2
D fmin fmin
= a − 3b
2
D
>0
D
<0
=
2 27
D(a
−
√
D)
−
1 9
ab
+c
(6. 29)
117
A
A. 1
A. 1. 1
??R iR , R vR
vR iR R
= = =
iR R vR R vR iR
(A. 1) (A. 2) (A. 3)
iR
R
vR
A. 1:
A. 1. 2
??L vL vL iL
∆t
∆iL
=
L
∆iL ∆t
(A. 4)
∆t → 0
vL iL
= =
L 1 L
diL dt vL dt
(A. 5) (A. 6)
iL
L
vL
A. 2:
118
ZL vL iL ZL
2
= = = =
(ω
jω L iL ZL vL ZL vL iL
(A. 7) (A. 8) (A. 9) (A. 10)
j
(j
= −1) ω
= 2π f )
f
A. 1. 3
??q C iL vC iC ∆t iC
∆t ∆vC
(A. 11) (A. 12)
∆q = ∆q = C ∆vC ∆vC = C ∆t
∆t → 0
iC vC
= =
C 1 C
dvC dt iC dt
(A. 13) (A. 14)
iC
C
vC
A. 3:
ZC vC iC ZC
= = = =
1 jωC iC ZC vC ZC vC iC
(A. 15) (A. 16) (A. 17) (A. 18)
A. 2
A. 2. 1
??2 2
(
)
R1 , R2 I V
119
V1 , V2 V1 V2
= =
IR1 IR2
V 2
= V1 + V2 =
IR1 R
+ IR2 =
I (R1
+ R2 )
(A. 19)
R 2
=
V I
= R1 + R2
2
(A. 20)
I I V1 V V2 R2 R1
⇒
V
R
= R1 + R2
A. 4:
V2 V2
V V R2
=
IR2
=
R1
+ R2
=V
R2 R1
+ R2
(A. 21)
R
ZL , ZC
A. 2. 2
??2
(
)
R1 , R2 I1 , I2 V
I1 I2 I I 2 R 1 R
= =
V R1 V R2
=
I1
+ I2 =
V R1
+
R
V R2
=V
1 R1
+
1 R2
(A. 22)
= =
V I 1 R1
= +
1
1 R1
+
1 R2
=
R1 R2 R1
+ R2
(A. 23)
1 R2
(A. 24)
120
I I1 V R1 I2 R2
I
⇒
V
R
=
1 1 R1 1 +R 2
A. 5:
2
(
)
2
I2 V R2 IR R2 1 R2
I 1
1 R1 1 1 R2
I2
=
=
=
I
·
+
=
I
R2 1 R1
+
1 R2
(A. 25)
A. 3
A. 3. 1
2 2 2
R a a
1
1
(
??)
⇔
b
V
b
A. 6:
??
ab
R1 4 Ω
a
6V
8Ω
R2
VL
RL
b
A. 7:
Vo Vo ab
=V
R2 R1
+ R2
Ri
=6
8 4
+8
= 4 [V]
Ri
= R1 //R2 = 4//8 =
·8 = 2. 667 [Ω] 4+8
4
121
?? [. . . ] ab VL RL Ri RL 2. 667
ab
= Vo
+ RL
=4
+ RL
RI 2. 667 Ω
a
4V
VL
RL
b
A. 8:
122
B
B. 1
B. 1. 1
[1]
1.
0V
−0. 5 ∼ −0. 8 V
2. 3.
µ (µc ) µ µ µm µm = 1. 5µc
4. E p / E g
gm
Ip
0. 6
µ
I p (E p , Eg ) 3
I p (E p , Eg )
=G
− 3α
2
1 −α
1
1
µc
−
1
3
µm
Ep
2
1 − 1− α
E gg
+
Ep
1 −α
1
µc ≥ −µc Egg
(B. 1)
E gg
=
Eg
+ 0. 6
α
0. 6
E gg
≤0
Ep
B. 1. 2
gm
gm
= = =
∂I p ∂Eg
1 1
−α
Ip
G
3
− 3α
2 1
1 −α
1
1
µc
Ep
−
1
3
µm
Ep
2
1 − 1− α
E gg
+
Ep
1 −α
1
−1
(B. 2)
µc
1
−α
·
E gg
+
(B. 3)
µc
rp
rp 1 rp
=
∂I p ∂E p
123
=
G
3
− 3α
2
1 − 1− 2 α 3
1 −α
1
1
µc
1 1
−
1
1
3 2
1 − 1− α
3 2
µm
E gg 1
−
−1
1 1
3
−α
Ep
2
1 − 1− α −1
E gg
+
Ep
1 −α
1
µc
+ Ep =
G 3
· − α µc
1 −α 1
+
3 2
Ep
1 −α
1
µc
3
− 3α
2 1
1
µc
1 Ep
− +
1 − 1− α
µm
1 1
Ep
2
1 − 1− α
E gg 1
+
Ep
1−α
1
µc
− 3α × · 2(1 − α) = µ
Ip 1 1
· · − α µc
1
1
E gg
+
Ep
µc
(B. 4)
− 3α
2
−α
rp
·
1 Ep
+
µc
·
E gg
1
+
Ep
µc
gm
µ = =
gm r p
=
E gg 1
1
+
Ep
·
1
1−3α 2
µc
·
3
1 Ep
+
µc
1
·
1
1 E gg +
Ep
µc
E gg Ep
+
µc
1
1−3α 2
+
µc
1
=
1
− 3α
2
·
µc
+
1
− 3α
2
·
E gg Ep ??
(B. 5)
(??) ??
Ip
Eg
= −0. 6
Ep (??)
1. 5 E gg
+ E p /µc = 0
µ
µc
??
(??)
E gg
0
µm µm =
2 3
− 3α
µc ≈ 1. 67µc
(B. 6)
??
(??), (??)
1−α
E gg
+ E p /µc
(??)
E gg
+
Ep
µc
=
G
1−α
Ip 3
− 3α
2
1
µc
−
1
1 −3 α 2
1−3α
(B. 7)
µm
1−α
Ep
2
(??) E gg
+
Ep
µc
=
G
1−α
{(1 − α)gm }
α
α
3
− 3α
2
α
1
1
µc
−
1
1−3α 2α
1−3α
(B. 8)
µm
1 −3 α 2α
Ep
2α
(??)
(??)
1 −α
gm 3
{(1 − α)gm }
1 −α
G
α
− 3α
2
α
1
1
α
=
G
µc
1
−
1
1 −3 α
µm
1
1 −3 α 2
Ep
2α
3 1−α
− 3α)
2
µc
1−α
−
1 −3 α
Ip
1−α
µm −
1 1
Ep
2
=
gm
G
(1−α)
2
α
3
− 3α
2
α
1
(1−3α)(1−α) 2α
(1−3α)(1−α)
µc
1
µm
1 2
Ep
2α
Ip
1−α
=
3 3 α 1−α 1 −2 α 2 Ip G Ep 2
µc
−
−3 α 2
µm
(B. 9)
124
(??) ??
[1, p. 124] (??)
1
B. 1. 3
E gg E gg
≤
0
2
E gg
>
0
>0
(
µ
) E st
µm
( )
=
E gg
+
Ep
µm
(B. 10)
(
)
1. 5 Ep
1. 5
Ik G G E gg
=G
E st
1. 5
=G
E gg
+
µm
(B. 11)
=0
Ip
Ip
(??)
1 −α 1
=G
3
− 3α
2
1
µc
−
1
3 2
1 − 1− α
1
1 −α
1
µm
1. 5
µc
Ep
3/2
E gg
=0
Ik
(??) Ik
=G
Ep
µm
1
3 2 1 − 1− α
G (??) G
=G
3
− 3α
2
1−α
1
1
µc
1 1
−
1
1−α
1
µm
1 − 1− α
µc
/2 µ3 m
= = =
G µm
1 − 1− α
3 2
µc
1
−
µm
1
3 2 1 − 1− α
/2 µ3 m
G
µm
G
µc −1 3 − 3α
3α
−
3 2
µm
1 − 1− α
=G
µm −1 µc
3 2
1 − 1− α
(B. 12)
?? [. . . ]
LUXMAN LV-105Uダウンロード上のご注意
Lastmanualsはユーザー主導型のハードウエア及びソフトウエアのマニュアル(ユーザーガイド・マニュアル・クイックスタート・技術情報など)を共有・保存・検索サービスを提供します。
お探しの書類がなかったり、不完全だったり、言語が違ったり、モデル名や言語が説明と違う場合など、いかなる場合でもLastmanualsはその責を負いません。またLastmanualsは翻訳のサービスもしていません。
規約に同意して「マニュアルをダウンロード」をクリックすればLUXMAN LV-105Uのマニュアルのダウンロードが開始されます。