ユーザーズガイド LUXMAN SQ507

Lastmanualsはユーザー主導型のハードウエア及びソフトウエアのマニュアル(ユーザーガイド・マニュアル・クイックスタート・技術情報など)を共有・保存・検索サービスを提供します。 製品を購入する前に必ずユーザーガイドを読みましょう!!!

もしこの書類があなたがお探しの取扱説明書・マニュアル・機能説明・回路図の場合は、今すぐダウンロード。Lastmanualsでは手軽に早くLUXMAN SQ507のユーザマニュアルを入手できます。 LUXMAN SQ507のユーザーガイドがあなたのお役に立てばと思っています。

LUXMAN SQ507のユーザーガイドをLastmanualsがお手伝いします。


Mode d'emploi LUXMAN SQ507
Download
マニュアル抽象的: マニュアル LUXMAN SQ507

詳しい操作方法はユーザーガイドに記載されています。

[. . . ] SPICE VI RG SPICE com_k. cir 1 2 3 1 Common cathode voltage amplifier with 12AU7 . INCLUDE 12AU7. lib X1 1 2 0 12AU7 SRPP 11 X1 12AU7 1 2 RL 33 kΩ 4 VI 3. 65 V RG 470 kΩ VBB 200 V 0 2. 3: ( ) 4 5 6 7 8 9 10 11 12 13 14 RL 1 4 33k VBB 4 0 200V RG 2 0 470k VI 2 0 DC -3. 646829V AC 1V . control op print v(1) v(2) i(vbb) tf v(1) vi print all . endc . END 12AU7. lib 2 . INCLUDE 3 SPICE 3 8 9 10 12 13 op print SPICE 11 tf Circuit Maker op tf SPICE 2 . OP . TF print Linux % spice3 com_k. cir 1 2 3 4 5 6 7 8 9 Circuit: Common cathode voltage amplifier with 12AU7 v(1) = 1. 000000e+02 v(2) = -3. 64683e+00 i(vbb) = -3. 03030e-03 transfer_function = -1. 27840e+01 output_impedance_at_v(1) = 8. 445019e+03 vi#input_impedance = 4. 700000e+05 4 v(1) 1 Eg 6 B Ep 5 v(2) 2 i(vbb) 3. 0303 mA Zo + 9 Zi 7 ?? A 8 12 2. 2 G-K ???? Co Ci RL eo ei Rg Rk E bb 2. 4: rp P G + −µeg eg K − Rk RL eo ei Rg ek 2. 5: eo = −µeg = µeg = eg RL rp + RL + Rk Rk (2. 5) ek ei A rp + R L + Rk (2. 6) (2. 7) + ek ei eg = = eg 1 +µ ei Rk rp Rk + RL + Rk 1 + µr 1 p +RL +Rk ei Rk eo = −µ = −µei + µr rp · RL RL rp p +RL +Rk + RL + Rk + RL + (1 + µ)Rk RL rp A = eo ei = −µ + (1 + µ)Rk + RL rp (2. 8) A = rp + (1 + µ)Rk 13 rp rp + (1 + µ)Rk rp Zi Zo = = = rp Rg + (1 + µ)Rk (2. 9) (2. 10) (2. 11) r p //RL 2. 2. 1 12AU7 SPICE E bb Rg Ip = 200 V, Ep = 470 kΩ, = 2. 9781 mA Rk = 1. 2 kΩ gm = 98. 14915 V, E g = 1508. 998 µS, r p = 33 kΩ, = −3. 57371 V, = 11. 40094 kΩ, µ = 17. 20398 RL A Zi rp Zo = −17. 20398 = = = 470 kΩ 11. 40094 1 33. 24572 1 33 11. 40094 + (1 + 17. 20398)1. 2 + 33 = −8. 570083 + (1 + 17. 20398)1. 2 = 33. 24572 [kΩ] 1 33 + = 16. 56120 [kΩ] 2. 2. 2 ??) X1 12AU7 1 2 RL 33 kΩ 3 4 VI RG 470 kΩ RK 1. 2 kΩ 0 VBB 200 V 2. 6: ( ) cur_fb. cir 1 2 3 4 5 6 7 8 Common cathode voltage amplifier with current feedback (12AU7) . INCLUDE 12AU7. lib X1 1 2 3 12AU7 RL 1 4 33k VBB 4 0 200V RG 2 0 470k VI 2 0 DC 0V AC 1V RK 3 0 1. 2k 14 9 10 11 12 13 14 15 . control op print v(1, 3) v(2, 3) i(vbb) tf v(1) vi print all . endc . END 1 2 3 4 5 6 7 8 9 Circuit: Common cathode voltage amplifier with current feedback (12AU7) v(1, 3) = 9. 814915e+01 v(2, 3) = -3. 57371e+00 i(vbb) = -2. 97810e-03 transfer_function = -8. 57008e+00 output_impedance_at_v(1) = 1. 656120e+04 vi#input_impedance = 4. 700000e+05 2. 2. 3 Rk RL Rk /RL Ao RL rp (2. 12) β = Rk /Rl |Ao | = µ Af Ao 1 + RL + Rk Af = + Ao β = 1 µr + µr p +RL +Rk RL RL p +RL +Rk · Rk RL =µ RL rp + (1 + µ)Rk + RL (2. 13) (??) 2. 3 ( ?? ) Ck Rk + RL Rk ?? [. . . ] (2)) V2 V2 Rg V1 V1 Cg (1) Ek E bb 0 [3, 4] ??(3) 66 E bb R L1 R L2 eo1 eo1 Cg R L1 V1 R L1 V1 V1 V2 eo1 ei1 Rg1 Rg2 ei2 Rk eo2 Rg E bb Rg E bb Rk Cg V2 R L2 V2 eo2 Rk R L2 eo2 −Ec (1) (2) (3) 3. 19: 3. 3. 1 ?? i1 rp + −µeg1 − − −µeg2 + rp i2 eo1 RL Rk RL eo2 3. 20: µ1 eg1 µ2 eg2 ei1 ei2 eo1 eo2 R1 = = = = i1 (r p1 i2 (r p2 eg1 eg2 + RL1 ) + (i1 + i2 )Rk + RL2 ) + (i1 + i2 )Rk (3. 31) (3. 32) (3. 33) (3. 34) (3. 35) (3. 36) + (i1 + i2 )Rk + (i1 + i2 )Rk = −i1 RL1 = −i2 RL2 = r p1 + RL1 , R2 = r p2 + RL2 i1 R1 i2 R2 i1 R1 i2 R2 µ1 {ei1 − (i1 + i2 )Rk } = µ2 {ei2 − (i1 + i2 )Rk } = µ1 ei1 µ2 ei2 µ1 ei1 µ2 ei2 = = + (i1 + i2 )Rk + (i1 + i2 )Rk + (1 + µ1 )(i1 + i2 )Rk + (1 + µ2 )(i1 + i2 )Rk = {R1 + (1 + µ1 )Rk }i1 + (1 + µ1 )Rk i2 = (1 + µ2 )Rk i1 + {R2 + (1 + µ2 )Rk }i2 {R2 + (1 + µ2 )Rk }µ1 ei1 − (1 + µ1 )Rk µ2 ei2 i = {R2 + (1 + µ2 )Rk }{R1 + (1 + µ1 )Rk }i1 − (1 + µ1 )(1 + µ2 )R2 k 1 67 i1 = = = i2 = = = eo1 eo2 {R2 + (1 + µ2 )Rk }µ1 ei1 − (1 + µ1 )Rk µ2 ei2 {R2 + (1 + µ2 )Rk }{R1 + (1 + µ1 )Rk } − (1 + µ1 )(1 + µ2 )R2 k {R2 + (1 + µ2 )Rk }µ1 ei1 − (1 + µ1 )Rk µ2 ei2 R1 R2 + {(1 + µ2 )R1 + (1 + µ1 )R2 }Rk µ1 (1 + µ2 )ei1 − µ2 (1 + µ1 )ei2 + µ1 ei1 R2 /Rk (1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk −µ1 (1 + µ2 )ei1 + µ2 (1 + µ1 )ei2 + µ2 ei2 R1 /Rk (1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk −µ1 (1 + µ2 )ei1 + µ2 (1 + µ1 )ei2 − µ1 ei1 R2 /Rk R L1 (1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk µ1 (1 + µ2 )ei1 − µ2 (1 + µ1 )ei2 + µ2 ei2 R1 /Rk R L2 (1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk e i2 (3. 37) (3. 38) =0 −{(1 + µ2 ) + R2 /Rk }µ1 RL1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk (1 + µ2 )µ1 RL2 (1 + µ2 )R1 + (1 + µ1 )R2 + R1 R2 /Rk (1 (3. 39) A1 = = A2 (3. 40) µ1 = µ2 = µ, r p1 = r p2 = r p , RL1 = RL2 = RL , R1 = R2 = R A1 = = R −(1 + (1+µ)R )µRL −{(1 + µ) + R/Rk }µRL −(1 + (1+µ)R )µRL = = 2 R (r +R ) 2(1 + µ)R + R /Rk 2R + 2(r p + RL ) + (1+µ)R (1+µ)R k k 2 p L k r p +RL 2 (3. 41) k A2 + µ)µRL = 2(1 + µ)R + R2 /Rk (1 µRL 2(r p + RL ) + (V1) (r p +RL )2 (1+µ)Rk (3. 42) (V2) |A1 | A2 (V1) =1+ + RL (1 + µ)Rk rp m (3. 43) (V2) = (r p + RL )/((1 + µ)Rk ) Rk RL µ AC AC V2 R L2 V1 R L1 1 +m R L2 V1 A2 R L2 R L1 AC | A1 | = |A1 | {(1 + µ2 )Rk + (r p2 + RL2 )}µ1 RL1 R L2 = = = A2 (1 + µ2 )Rk µ1 RL2 {(1 + µ2 )Rk + r p2 }RL1 (1 + µ2 )Rk − RL1 (3. 44) R L2 V2 AC V1 V2 R L2 V1, V2 AC 68 i2 i1 eo R L1 r p1 −µ1 eg1 + − ek −µ2 eg2 − + Rk r p2 i3 R L2 3. 21: 3. 3. 2 eo ek eg1 eo = = = = = i1 R L 1 (i2 eg2 (3. 45) (3. 46) (3. 47) (3. 48) (3. 49) + i3 )Rk = −ek + (i2 + i3 )Rk + RL2 ) + (i2 + i3 )Rk + µ1 eg1 µ2 eg2 i2 r p1 i3 (r p2 eo − µ1 (i2 + i3 )Rk eo = i2 r p1 + (i2 + i3 )Rk + RL2 ) + (i2 + i3 )Rk = {(1 + µ1 )Rk + r p1 }i2 + (1 + µ1 )Rk i3 = = = = = i3 (r p2 (1 −µ2 (i2 + i3 )Rk 0 + µ2 )Rk i2 + {(1 + µ2 )Rk + r p2 + RL2 }i3 {(1 + µ2 )Rk + r p2 + RL2 }eo i2 [(1 + µ2 )Rk r p1 + {(1 + µ1 )Rk + r p1 }(r p2 + RL2 )]i2 (1 + µ2 )Rk + r p2 + RL2 eo (1 + µ2 )Rk r p1 + {(1 + µ1 )Rk + r p1 }(r p2 + RL2 ) (1 + µ2 ) + (r p2 + RL2 )/Rk (1 + µ2 )r p1 + (1 + µ1 )(r p2 + RL2 ) + r p1 (r p2 + RL2 )/Rk eo i1 Zo = = + i2 = 1 1 R L1 + (1+µ2 )+(r p2 +RL2 )/Rk (1+µ2 )r p1 +(1+µ1 )(r p2 +RL2 )+r p1 (r p2 +RL2 )/Rk RL1 // (1 + µ2 )r p1 + (1 + µ1 )(r p2 + RL2 ) + r p1 (r p2 + RL2 )/Rk (1 + µ2 ) + (r p2 + RL2 )/Rk (3. 50) 3. 3. 3 12AU7 E bb 15. 3 kΩ, = −6. 00566 V, I p = 3. 26816 mA = 11. 75587 kΩ, µ = 16. 32624 E ge = 350 V, RL Ep gm = 33 kΩ, = 94 V = 142. 1451 V, E g = 1388. 774 µS, r p R1 A1 A2 = 44. 75587 [kΩ] {44. 75587 + (1 + 16. 32624)15. 3}16. 32624 × 33 = −6. 487483 = − 44. 755872 + 2(1 + 16. 32624)44. 75587 × 15. 3 (1 + 16. 32624)15. 3 × 16. 32624 × 33 = = 5. 5504 44. 755872 + 2(1 + 16. 32624)44. 75587 × 15. 3 R2 69 = Zo = 33// (1 + 16. 32624)(2 × 10. 6052 + 33) + 10. 6052 × 44. 75587/15. 3 = 19. 88694 [kΩ] (1 + 16. 32624) + 44. 75587/15. 3 20. 834 kΩ ?? V1 V1 V2 100 pF V2 V1 100 pF, V2 0. 01 µF V1 0. 01 µF V2 0. 01 µF V2 V1 100 pF 0. 01 µF, V2 100 pF V1 Cs1=100pF, Cs2=0. 01uF, V1 Cs1=0. 01uF, Cs2=100pF, V2 Cs1=Cs2=100pF, V1 Cs1=Cs2=100pF, V2 10 20 Gain (dB) Cs1=0. 01uF, Cs2=100pF, V1 0 Cs1=Cs2=0. 01uF −10 Cs1=100pF, Cs2=0. 01uF, V2 −20 100 1k 10k Frequency (Hz) 100k 1M 3. 22: (1) V1 220 pF, V2 200 pF ?? 3. 3. 4 SPICE ?? mullard. cir 1 2 3 4 5 6 7 8 9 10 11 12 13 Mullard type phase inverter with 12AU7 . INCLUDE 12AU7. lib . OPTIONS ITL1=200 ITL2=200 X1 1 2 3 12AU7 X2 4 5 3 12AU7 RK 3 0 15. 3k RL1 6 1 33k RL2 6 4 33k RG1 2 0 470k RG2 5 0 470k VI1 2 0 DC 94V VI2 5 0 DC 94V VBB 6 0 350V 70 16 18 V1, 220pF Gain (dB) V2, 200pF 10 100 12 14 1k 10k Frequency (Hz) 100k 1M 3. 23: (2) 6 RL1 33 kΩ X1 2 12AU7 RL2 33 kΩ 4 1 X2 12AU7 5 VBB 350 V VI1 94 V RG1 470 kΩ 3 RG2 RK 15. 3 kΩ 470 kΩ VI2 94 V 0 3. 24: ( ) 71 14 15 16 17 18 19 20 21 22 . control op print v(1) v(3) v(1, 3) v(2, 3) v(4, 3) v(5, 3) i(vbb) tf v(1) vi1 print all tf v(4) vi1 print all . endc . END 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Circuit: Mullard type phase inverter with 12AU7 v(1) = 2. 421508e+02 v(3) = 1. 000057e+02 v(1, 3) = 1. 421451e+02 v(2, 3) = -6. 00566e+00 v(4, 3) = 1. 421451e+02 v(5, 3) = -6. 00566e+00 i(vbb) = -6. 53632e-03 transfer_function = -6. 48748e+00 output_impedance_at_v(1) = 1. 988694e+04 vi1#input_impedance = 4. 700000e+05 transfer_function = 5. 550397e+00 output_impedance_at_v(4) = 1. 988694e+04 vi1#input_impedance = 4. 700000e+05 3. 3. 5 ??x V1 V1 E bb 33 kΩ = 350 V ( ) V2 ei E g1 = 10 V Ek = 104. 9 V I p1 V1 = 94 + 10 − 104. 9 = −0. 9 V E p1 = 70. 6 V E g2 = 94 − 104. 9 = −10. 9 V E p2 = 175. 5 V 5. 29 + 1. 57 = 6. 86 mA V1 Eg E o1 = 5. 29 mA = 175. 5 V I p2 = 1. 57 mA E o2 = 298. 3 V 6. 54 mA 12 V V2 =0 R 12 V trans. diff > Ei <- seq(-20, 20, by=1) > z <- trans. diff(t12AU7, ei1=Ei, Ebb=350, Eg=94, RL1=33e3, Rk=15. 3e3) > matplot(Ei, cbind(z$eo1, z$eo2), type="l", lty=1) ??V1 V1 72 8 Eg=0V −2 −4 −6 −8 −10 ei=20 18 16 6 14 12 10 8 6 −12 V1 load line Ip1=5. 29 −14 −16 2 0 −2 −4 −6 −18 Ip (mA) 2 4 4 Ip2=1. 57 −8 −10 V2 load line Ep1= 70. 6 Ek=104. 9 150 Ep (V) −12 −14 −16 Ep2=193. 4 −18 −20 Eo1=175. 5 200 250 0 Eo2=298. 3 300 350 0 50 100 3. 25: Eo (V) 150 −20 200 250 300 350 −10 0 Ei (V) 10 20 3. 26: 73 3. 3. 6 AC R L1 , R L2 (??) 100 kΩ R p2 R L1 = R p1 //Rg1 = 33//100 = 24. 81203 [kΩ] R L2 R p2 = = {(1 + 16. 32624)15. 3 + 11. 755}24. 81203 = 28. 58815 [kΩ] (1 + 16. 32624)15. 3 − 24. 81203 1 1 R L2 (3. 51) − 1 100 = 40. 03278 [kΩ] ?? (3. 52) ?? 20 ?? Gain (dB) 0 1 5 10 15 10 100 1k Frequency (Hz) 10k 100k 1M 3. 27: AC mullard3. cir 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mullard type phase inverter with 12AU7 . INCLUDE 12AU7. lib X1 1 2 3 12AU7 X2 4 5 3 12AU7 RK 3 0 15. 3k RL1 6 1 33k RL2 6 4 40. 03278k RG1 2 0 470k RG2 5 0 470k VI1 2 0 DC 94V AC 1V VI2 5 0 DC 94V VBB 6 0 350V CC1 1 7 1u CC2 4 8 1u RG3 7 0 100k 74 8 Eg=0V ei=20 18 16 14 Ip1=5. 81 12 V1 load line 10 8 6 −2 −4 −6 −8 −10 −12 6 −14 4 −16 0 −2 −4 −6 −18 −20 −8 Ip (mA) 4 2 Ip10=3. 49 Ip20=3. 01 2 Ip2=1. 04 V2 load line −10 −12 −14 Ep2=181. 0 −16Eo10=234. 9 −18 −20 Eo1=177. 3 Eo20=229. 4 0 Ep1= 72. 6 Ek=104. 8 0 50 100 150 Eo2=285. 8 300 350 200 Ep (V) 250 3. 28: AC Eo (V) −50 −20 0 50 −10 0 Ei (V) 10 20 3. 29: AC 75 16 17 18 19 20 21 22 23 RG4 8 0 100k CS1 7 0 100p CS2 8 0 100p . control ac dec 20 1 1Meg print db(v(7)) db(v(8)) . endc . END ( ) 50 V R p2 m R L2 R p2 + RL 11. 75587 + 24. 81203 = = 0. 1379445 (1 + µ)Rk (1 + 16. 32624)15. 3 = RL1 (1 + m) = 24. 81203(1 + 16. 32624) = 28. 23471 [kΩ] = rp = 1 28. 23471 1 − 1 100 = 39. 34313 [kΩ] ?? Gain (dB) 0 1 5 10 15 20 10 100 1k Frequency (Hz) 10k 100k 1M 3. 30: AC ( ) mullard4. cir 1 2 3 4 5 6 7 8 9 10 Mullard type phase inverter with 12AU7 . INCLUDE 12AU7. lib X1 1 2 3 12AU7 X2 4 5 3 12AU7 RK 3 0 15. 3k RL1 6 1 33k RL2 6 4 39. 34313k RG1 2 0 470k RG2 5 0 470k VI1 2 0 DC 94V AC 1V 76 11 12 13 14 15 16 17 18 19 20 21 22 23 VI2 5 0 DC 94V VBB 6 0 350V CC1 1 7 1u CC2 4 8 1u RG3 7 0 100k RG4 8 0 100k CS1 7 0 100p CS2 8 0 100p . control ac dec 20 1 1Meg print db(v(7)) db(v(8)) . endc . END 77 4 ( ) (4 Ω 16 Ω) OTL (Output Transformer Less) ∼ 78 5 5. 1 ??1 N1 2 N2 N1 : N2 e1 e2 5. 1: 1 e1 e2 n ??1 i1 e1 2 e2 = N1 N2 =n (5. 1) 2 N1 : N2 i2 Z2 e1 e2 Z2 5. 2: 1 1 ( ) 2 ( ) e1 i1 2 = e2 i2 (5. 2) i1 i2 i1 = = e2 e1 1 n = 1 n (5. 3) i2 (5. 4) 1 Z1 Z1 = e1 i1 = ne2 i2 /n = n2 e2 i2 = n2 Z2 2 (5. 5) 1 79 1. 1 3 2 2 2 1, 2 2 5. 2 1 ( ) ?? n : 1 r1 Ll1 1 n : 1 Ll2 r2 ZL ⇒ C s1 Ri LP C s2 ZL 5. 3: (1) r1 r2 C s1 C s2 Ll1 Ll2 LP Ri : : : : : : : : 1 2 1 2 1 2 1 2 2 1 1 ZL n 2 2 ??1 2 ZL =n 2 ZL 5. 2. 1 Cs 1/1000 ZL 1 Ll Ll 1 LP 1 [2, p. 178] 1 80 r1 Ll1 n Ll2 2 n r2 2 n : 1 C s1 Ri LP C s2 /n 2 ZL 5. 4: r1 Ll 1 n Ll 2 2 2 (2) n r2 C s1 Ri LP C s2 /n 2 ZL = n2 ZL 5. 5: (3) ??r1 r2 r2 Ri Rs r1 r 2 = n2 r2 Rs r = r1 + n2 r2 e e1 Ri e2m ZL e e1 Ri e2m ZL 5. 6: 1 r Ri 1 e1 1 r e2m e1 e2m + Ri //ZL R s + r + Ri //ZL Ri //ZL = e R s + r + Ri //ZL = e Am (5. 6) (5. 7) Am = = e2m e1 = 1 Ri //ZL r + Ri //ZL = L = 1 1 + Ri //Z r L Ri ZL Ri ZL 1 +r Ri +Z Ri Z + r(Ri + ZL ) Ri r L = = Ri ZL rRi + ZL (r + Ri ) · ZL r //Ri = + Ri · ZL r +Ri rRi + ZL (5. 8) Ri r + Ri + ZL 81 r Ri Am ≈ ZL r + ZL = 1 1 + r/ZL = 1 1 + r/n2 ZL (5. 9) η pi po pi po e2m e1 ZL r Ri η= = = + ZL (5. 10) r e e2m ZL = = Z p ≈ ZL e2m e 2m = R s +r +Z Z L L = e R s +Z + ZL R s + r + ZL Rs (5. 11) L Rs = 2Z p r + 2Z p (5. 12) 5. 2. 2 1 ??LP 1 Rs r = r1 + n2 r2 e e1 Ri LP e2l ZL 5. 7: e1 = eLl + Ri //ZL //ZL + r + Ri //ZL //ZL Ri //ZL //ZL = e R s + r + Ri //ZL //ZL e r P Rs (5. 13) P P (5. 14) P Al Al = e2l e1 = r Ri //ZL //ZL + Ri //ZL //ZL P P 82 Al = = = r Ri //ZL ZL · = + Ri //ZL r//Ri //ZL + ZL P P Am Z LP r //Ri //ZL + ZL P Am 1 Am 1 + + r //Ri //Z ZL P = L Am 1 1 + r //Ri //Z sLP L 1 1 1 s r //Ri //Z LP L (5. 15) Tl = LP /(r //Ri //ZL ) ≈ LP /r 5. 2. 3 1 LP Ll ??Cs Ll Cs Rs r = r1 + n2 r2 Ll = Ll1 + n2 Ll2 e e1 Ri Cs e2h ZL 5. 8: e1 = e2h + ZL + Ri //ZL //ZC + r + ZL + Ri //ZL //ZC Ri //ZL //ZC = e R s + r + ZL + Ri //ZL //ZC e r l s Rs (5. 16) s l s (5. 17) s l Ah Ah = = = e2h e1 = r Ri //ZL //ZC + ZL + Ri //ZL //ZC s l s 1 1 + (r + ZL ) R //Z l i 1 L = 1 1 //ZC s + (r + Z L ) l Ri //Z 1 + L 1 ZC s 1 1 + (r + sLl ) +s Ri //Z 1 L + sC s 1 = = = 1 s Ll C s 2 Ri //Z Ll L + Csr + Ri //Z r = L 1 s2 Ll C s +s Ri //Z Ll L + Csr + r +Ri //Z Ri //Z L (5. 18) L Ri //ZL r + Ri //ZL 2 · s2 Ll C s 1 Ri //Z r +Ri //Z L +s L r +Ri //Z Ll L + C s r//Ri //ZL + 1 (5. 19) Am 1 s Ll C s Ri //Z r +Ri //Z L +s L r +Ri //Z Ll L + C s r//Ri //ZL + 1 83 2 ω0 ω0 = 1 Ll C s Am 1 Ll C s Ri //Z r +Ri //Z L Q L = √ ≈ √ 1 Ll C s L (5. 20) Q = = Am Ll C s r +Ri //Z Ll Ri //Z r +Ri //Z L √ L + C s (r//Ri //ZL ) + Csr (5. 21) Ll C s Am Ll L √ Ri //Z ≈ Q Ll C s Ri //Z Ll > 1/ √ 2 L + Csr 5. 3 [2, pp. 187] 5. 3. 1 2 1Ω 2 5. 3. 2 2 e2 1 n n 2 e1 e2 1 e1 , 2 = (5. 22) DMM 400 Hz 5. 3. 3 1 3 2 1 ??1 Rs 84 eR Z Z eP i eP eR /R s 1 eP eR eP = = = Rs (5. 23) 50 Hz∼300 kHz R s 1 kΩ eR eP C s1 Ri LP C s2 Rs r1 Ll1 L l2 = n2 Ll2 r 2 = n2 r2 = C s2 /n2 Z = eP R s /eR 5. 9: 1 ( ) ( ) C s1 , C s2 1 1 Z Ll1 , L l2 = r 2 1 + (ωLP )2 (5. 24) LP 1 = Z2 2 − r1 ω = Z2 2 − r1 2π f (5. 25) 1 1 1 50 Hz, 5 Vrms LP Cs = C s1 + C s2 Z f = 1/2π Cs √ = r1 + Ri (5. 26) Ll C s Z = 1 ωC s (5. 27) Cs = 1 2π f Z (5. 28) C s2 f C s2 2 C s1 C s2 = 1/2π 1 Ll C s2 = 4π2 f 2 Ll Ll (5. 29) −6 dB/oct 85 5. 3. 4 2 1 ??eR 10 kHz∼100 kHz R s 1 kΩ eR eP C s1 Rs r Ll 1 1 eP 5. 10: ( ) ( ) Ll C s1 6 dB/oct 6 dB/oct Z Z = r2 + (ωLl )2 √ − r2 2π f ) r r (5. 30) √ Ll = Z2 − r2 = ω Z2 (5. 31) (Z B- P1 2 B- P2 5. 3. 5 ( KT-88SSMA ) DMM 1 r1 = 146. 8 Ω 2 r2 = 0. 66 Ω 2 e2 400 Hz 1 n e1 = 1. 317 V 2 = 78. 8 mV n = e1 e2 = 1. 317 0. 0788 = 16. 7132 (5. 32) 86 2 1 r2 = n2 r2 = 16. 71322 × 0. 66 = 184. 3585 [Ω] r (5. 33) 1 r = r1 + r2 = 146. 8 + 184. 3585 = 331. 1585 [Ω] (5. 34) η= −0. 6 dB 1 1 1 + r/n2 ZL = 1 1 + 331. 1585/(16. 71322 · 8) = 0. 871 (5. 35) ??2 6 dB 2 50 Hz ( Zo ) 1 3809 Ω 2 = 1 LP = 2 Zo 2 − r1 √ = 38092 2π f − 146. 82 = 12. 12 [H] 2π50 (5. 36) Impedance (ohm) 200 10 1k 10k 100k 500k 100 1k Frequency (Hz) 10k 100k 500k 5. 11: 87 2 40 kHz 1 2π f Z 1 2π40 Zo = 9861 Ω Cs = = × 103 · 9861 = 403. 5 [pF] (5. 37) 2 3. 25 kHz Zo = 291 kΩ 2 20 kHz Zs = 1295. 3 Ω Ll = 2 Zs − r2 √ = 1295. 32 2π f − 331. 15852 = 9. 965 [mH] 2π20 × 103 (??) (5. 38) K = 1 − Ll LP = 1 − 0. 009965 12. 12 = 0. 99959 (5. 39) 2 1 C s2 C s2 C s1 2 1 500 kHz = = = 1 2 2 4π f Ll n C s2 Cs 2 = 10. 168 [pF] · (500 × 10 ) · 9. 965 × 10−3 = 16. 71322 · 10. 168 × 10−12 = 2840 [pF] 4π 2 3 2 = (5. 40) (5. 41) (5. 42) − C s2 = 403. 5 − 10. 168 = 393. 3 [pF] 5. 3. 6 ( F-2021 ) DMM r2 1 r11 = 64. 7 Ω r12 = 73. 5 Ω 2 = 0. 25 Ω 2 1 kHz e2 1 n e11 e2 e11 = 3. 81 V e12 = 3. 80 V 2 = 0. 3127 mV n = = 3. 81 0. 3127 = 12. 1842 (5. 43) 2 1 r2 = n2 r2 = 12. 18422 × 0. 25 = 37. 11 [Ω] (5. 44) 88 1 2 2 1 2 Zo 2 − r11 ?? 2 B- P2 50 Hz Zo = 9715 Ω √ = LP = 97152 − 64. 72 2π f 2π50 = 30. 92 [H] (5. 45) Impedance (ohm) 100 10 1k 10k 100k 100 1k Frequency (Hz) 10k 100k 500k 5. 12: 2 10 kHz 1 2π f Z 1 1 2π10 Zo = 7067 Ω Cs = = × 103 · 7067 = 2252 [pF] 2 1 (5. 46) 2 1. 35 kHz Zo = 79. 2 kΩ 1 89 2 1 -2 2 Zs 40 kHz Zs = 456. 5 Ω Ll ps = − r2 ps √ = 456. 52 2π f − 101. 812 = 1. 771 [mH] 2π40 × 103 (??) (5. 47) K ps = 1 − Ll ps LP = 1 − 0. 001771 30. 92 = 0. 9999714 (5. 48) B- P2 40 kHz Zs = 945. 2 Ω 1 Ll p p = 2 Zs − r2 pp √ = 945. 22 2π f − 138. 22 = 3. 720 [mH] 2π40 × 103 (5. 49) Kpp = 1 − Ll p p LP = 1 − 0. 003720 30. 92 = 0. 999940 (5. 50) 2 1 95. 8 kHz B- P2 2 5. 4 SPICE 2 SPICE ( ) SPICE ?? r1 K = 1 − P Ll LP r2 S1 Cs Ri LP LS = LP /n 2 B S0 5. 13: SPICE ( ) 1 2 1 2 1 1 LP 2 2 ( L P /n ) 2 90 Ll 1 LP K K = 1 − Ll LP (5. 51) 1 1 Q Q = ≈ ≈ LP Ll1 1 1 Q (5. 52) K − 1 (5. 53) Q Q 1 −K 1000 K (5. 54) = 0. 999 ?? OPT2k5. inc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 * * OPT 2k5 * . SUBCKT OPT2k5 P B S1 S0 * Primary inductance (2500ohm 12. 12H) L1 P 1 12. 12 * Iron loss RI P 1 291k * Primary DC resistance R1 1 B 146. 8 * Primary stray capacitance CP P B 393. 3p * Secondary inductance (8ohm) L2 S1 2 0. 04338939 * Secondary DC resistance R2 2 S0 0. 66 * Secondary stray capacitance CS S1 S0 2840p * coupling factor K L1 L2 0. 99959 . ENDS 5. 5 SPICE OPT 3 ( ) ?? [. . . ] 0 Ik0 Ig0 Ik Ik ( y (??)) = 0. 8Ik0 Ig0 1. 6 (B. 19) Ig1 = = 0. 5Ik0 127 Ik , Ig Ik lim Ik1 Ik0 Ig0 Ik Ig1 Ig Eg Ep B. 4: (??) Ik0 , Ik1 , Ig1 Ik 0 Ik 1 Ig1 = = = G Eg G 1. 5 Eg 0. 5 Ik0 µ = 0. 5G + Eg 1. 5 =G 1. 5 1 + 1 1. 5 µ Eg 1. 5 Eg xg = = Ig1 Ik 1 Ik1 = 0. 5G E g G (1 1. 5 1. 5 Eg + µ) 1 1. 5 = 0. 5 (1 + µ) 1 1 1. 5 (B. 20) G lim 1. 5 Eg = G (1 + Eg µ) 1. 5 1 1. 5 Eg 1. 5 =G + 1 1. 5 µ (B. 21) (??) ( ??) Ip = min(Ik − Ig , I p lim ) (B. 22) Ik , Ig , I p Ik lim I p lim Ik = (1 − xg )Ik lim Ik − Ig Ig Ep B. 5: 128 B. 1. 4 E gg E go E gg Eg 0. 6 V = Eg + Ego (B. 23) a b c = = = 1 1 3 2 −α −a= −1 3 2 (B. 24) − 1 1 −α (B. 25) (B. 26) 3α 3 − 3α 2 3 1−α 1 = = = 3 2a 1 a 1 µc − 1 µm Ep 1 − 1− 2 α µc 3α 2 − 3 − 3α 2µc Ep b b Ep = · Ep 1 − b 3 2a Ep b µc −1 · µc = c 2 µc (??) Ip =G 3 2a a c 2 · Ep b µc ac 3 E gg + Ep a µc (??) G =G b (B. 27) Ik Ig I p lim Ip  a b a E E  3 c   E gg + ,  G 2a 2 · µ µ =  b 1. 5  E   G ac Egg + , 3 µ     0, =  E 1. 5   xgGlim Eg + 0. 4 , 1. 2 E +E p p c c p m g p g E gg E gg Eg Eg ≤0 >0 (B. 28) ≤0 <0 (B. 29) (B. 30) (B. 31) = = (1 . 5 − xg )Glim E 1 p min( Ik − Ig , I p lim ) B. 2 (G2) Ep Ep E g2 = E g2 129 Ik1 Ik 1     G =   G 3−3α 2 3α−1 3−3α a µc b 1 − + E gg µm E g2 E g2 1. 5 µm 1 b E gg + E g2 a µc , E gg E gg ≤0 >0 , (B. 32) Ig = xg G lim E g 1. 5 fg ( E p ) (B. 33) B. 2. 1 G2 G2 G2 G2 (G1 f ( E p , E g2 ) f ( E p , E g2 ) Ik ) 1 = 1 − 0. 4(e − 15 E p E g2 − e−15 ) (B. 34) ??0. 6 f ( E p , E g2 ) 1 Ep = E g2 1 Ep = 0 0. 6 E g2 Ep B. 6: Ep E g2 0. 4 ∂ f (E p , Eg2 ) ∂E p ∂ f (E p , Eg2 ) ∂Eg2 = · 15 E g2 0. 4 e − 15 E p E g2 (B. 35) = − · 15E p 2 E g2 e − 15 E p E g2 (B. 36) 130 Ik2 Ik2 = f ( E p , E g2 )( Ik1 − Ig ) (B. 37) B. 2. 2 G2 G2 Ep Ep 1. 5 g( E p ) g( E p ) r Ep = (1 − r) 1 − + 10 +r (B. 38) =∞ ?? g( E p ) 1 Ep =0 1 Ep =∞ r Ep B. 7: r Ig2 = g ( E p ) Ik 2 (B. 39) Ep 0. 5 ∂g(E p ) −15(1 − r)(1 − E +10 ) = ∂E p E2 + 20E p + 100 p p Ep (B. 40) Ep I p , Ig2 r Ig2 r = I p + Ig2 − (1 − Ep E p +10 Ep ) 1. 5 1 − (1 − E p +10 )1. 5 (B. 41) 131 B. 2. 3 G2 1 h( E p , E g2 ) h( E p , E g2 ) = − Ea E g2 − E a Ep (B. 42) Ea ??Ep = Ea h( E p , E g2 ) 0 Ep = E g2 1 Ea O E g2 Ep B. 8: 1 Ik3 = h(E p , Eg2 )Ik2 (B. 43) ∂h(E p , Eg2 ) ∂E p ∂h(E p , Eg2 ) ∂Eg2 − Ea E p − Ea = − ( E g2 − E a )2 E g2 = 1 (B. 44) (B. 45) B. 2. 4 Ik lim Ik 4 Ip = = = (1 − xg )Glim max(E p , Eg2 )1. 5 − Ig2 , I p lim ), 0} (B. 46) (B. 47) (B. 48) min( Ik3 , Ik lim ) max{min( Ik4 Ig2 = max(Ik4 − I p , 0) (B. 49) 132 B. 2. 5 gm 1 rp = = ∂I p = ∂Eg ∂I p = ∂E p ∂Ig2 = ∂Eg ∂Ig2 ∂Eg2 2 a ∂(Egg + µg ) c ∂Eg E ( E gg f f + + E g2 µc ) a Ip = E gg Ip a + E g2 Ip (B. 50) µc (B. 51) (h h E − g) −g Ig2 gmg2 1 rg2 = = 2 a ∂(Egg + µg ) c ∂Eg ( E gg + E g2 = E gg a a µc ) + E g2 Ig2 (B. 52) µc = = µg1-g2 ∂I p ∂Eg2 µg1-g2 = = = =   f   Ig2    + f Ig2 f f b ∂{( µ1c − µ1 ) E g2 } m ∂Eg2 1 − {( µ c µm ) E g2 } 1 b + 2 a ∂(Egg + µg ) c ∂ E g2 E ( E gg + E g2 a µc )        (B. 53) + b E g2 ∂Eg2 ∂Eg Ip f f Ig2 = Ig20 µc Egg + Eg2 ∂Ig2 ∂Eg2 = · = gmg2 rg2 ∂Eg ∂Ig2 + b E g2 + a (B. 54) + h h −g = a ∂Eg2 ∂Eg I p = I p0 ∂I p ∂Eg E g2 µc Egg + Eg2 ∂Eg2 ∂Eg2 · = gm ∂I p ∂I p + a (B. 55) E gg + f f µc + h−g h + b E g2 + µc Egg +Eg2 a (B. 56) B. 3 B. 3. 1 R R ( ) ( ) ( ) > t12AU7 <- list(G=0. 0005533071, muc=13. 08962, alpha=0. 584886, Ego=0. 8900572, + Cgp=1. 5e-12, Ci=1. 6e-12, Co=0. 4e-12) # > t12AU7 # $G [1] 0. 0005533071 $muc [1] 13. 08962 133 $alpha [1] 0. 584886 . . . Cgp R SPICE 1 3 2 4 Ep Eg Eg2 B. 3. 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Ip "Ip" <function(p, Ep, Eg) { # # p: # Ep: # Eg: } Ip. sub(p, Ep, Eg)$ip "Ip. sub" <function(p, Ep, Eg) { # # p: # Ep: # Eg: # # $ip: # $ig: # $mum: mu # $Egg: Egg <- Eg + p$Ego # (B. 23) Ep <- pmax(Ep, 0) ik <- 0 * Ep # ig <- 0 * Ep # (Ep >> Eg ) a <- if (p$alpha == 1) Inf else 1/(1 - p$alpha) b <- 1. 5 - a # (B. 25) c <- 3 * p$alpha - 1 # (B. 26) G. p <- p$G * (c * a / 3)ˆb # (B. 27) mum <- a / 1. 5 * p$muc # (B. 6) # (B. 24) # G. lim <- if (is. null(p$G. lim)) G. p * (1 + 1/mum)ˆ1. 5 else p$G. lim # (B. 21) Ig. ratio <- if (is. null(p$Ig. ratio)) 0. 5/(1 + 1/mum)ˆ1. 5 else p$Ig. ratio # (B. 20) # gm <- Egg <= 0 # Egg estm <- pmax(Egg + Ep/p$muc, 0) ik[gm] <- p$G * (ifelse(Ep == 0, 0, (c / 2 / p$muc * Ep)ˆb) * (1. 5 / a * estm)ˆa)[gm] # (B. 28) gp <- Egg > 0 # Egg estp <- pmax(Egg + Ep/mum, 0) ik[gp] <- (G. p * estpˆ1. 5)[gp] # (B. 28) 134 49 50 51 52 53 54 55 56 57 58 59 # Eg <- pmax(Eg, 0) ig <- Ig. ratio * G. lim * Egˆ1. 5 * (Eg / ifelse(Eg > 0, (Ep + Eg), 1) * 1. 2 + 0. 4) # (B. 29) # iplim <- (1 - Ig. ratio) * G. lim * Epˆ1. 5 # ip <- pmax(pmin(ik - ig, iplim), 0) } list(ip=ip, ig=ig, mum=mum, Egg=Egg) # (B. 30) # (B. 31) Ip. sub Ip Ip. sub ip B. 3. 3 1 2 3 4 5 6 7 8 9 10 Ig "Ig" <function(p, Ep, Eg) { # # p: # Ep: # Eg: } Ip. sub(p, Ep, Eg)$ig Ip. sub B. 3. 4 1 2 3 4 5 6 7 8 9 10 11 12 13 gm "gm" <function(p, Ep, Eg) { # # p: # Ep: # Eg: i <- Ip. sub(p, Ep, Eg) ifelse(i$ip <= 0, NA, ifelse(i$Egg <= 0, i$ip / (1 - p$alpha) / (i$Egg + Ep/p$muc), i$ip * 1. 5 / (i$Egg + Ep/i$mum))) } 0 NA gm B. 3. 5 1 2 3 rp "rp" <function(p, Ep, Eg) { 135 4 5 6 7 8 9 10 11 12 13 14 # # p: # Ep: # Eg: i <- Ip. sub(p, Ep, Eg) ifelse(i$ip <= 0, NA, ifelse(i$Egg <= 0, (1-p$alpha) / ((1-3*p$alpha)/2/Ep + 1/p$muc/(i$Egg + Ep/p$muc)) / i$ip, (i$mum * i$Egg + Ep)/(1. 5 * i$ip))) } B. 3. 6 1 2 3 4 5 6 7 8 9 10 11 12 mu "mu" <function(p, Ep, Eg) { # # p: # Ep: # Eg: i <- Ip. sub(p, Ep, Eg) ifelse(i$ip <= 0, NA, ifelse(i$Egg <= 0, 1/((3-3*p$alpha)/2/p$muc + (1-3*p$alpha)/2 * i$Egg/Ep), i$mum)) } B. 3. 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Ipp "Ipp" <function (p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: } Ipp. sub(p, Ep, Eg, Eg2)$ip "Ipp. sub" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: # # $ip: # $ig: # $ig2: # # Eg2 <- Eg2 + 0*Ep Ep <- Ep + 0*Eg2 Egg <- Eg + p$Ego Ep <- pmax(Ep, 0) ik <- 0 * Ep ig <- 0 * Ep a <- 1/(1 - p$alpha) b <- 1. 5 - a c <- 3 * p$alpha - 1 # (B. 23) # # # (B. 24) # (B. 25) # (B. 26) 136 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 G. p <- p$G * (c * a / 3)ˆb mum <- a / 1. 5 * p$muc # (B. 27) # (B. 6) # Ig. ratio <- if (is. null(p$Ig. ratio)) 0. 5/(1 + 1/mum)ˆ1. 5 else p$Ig. ratio # (B. 20) G. lim <- if (is. null(p$G. lim)) G. p * (1 + 1/mum)ˆ1. 5 else p$G. lim # (B. 21) # gm <- Egg <= 0 # Egg estm <- pmax(Egg + Eg2/p$muc, 0) ik[gm] <- p$G * (ifelse(Eg2 == 0, 0, (c / 2 / p$muc * Eg2)ˆb) * (1. 5 / a * estm)ˆa)[gm] # (B. 32) gp <- Egg > 0 # Egg estp <- pmax(Egg + Eg2/mum, 0) ik[gp] <- (G. p * estpˆ1. 5)[gp] # (B. 32) # Eg <- pmax(Eg, 0) ig <- Ig. ratio * G. lim * Egˆ1. 5 * (Eg / ifelse(Eg > 0, (Ep + Eg), 1) * 1. 2 + 0. 4) # (B. 33) # 2 f <- 1 - 0. 4 * (exp(-Ep/Eg2*15)-exp(-15)) ik2 <- f * (ik - ig) # (B. 34) # (B. 37) # g <- (1 - p$g2. r) * (1 - Ep/(Ep+10))ˆ1. 5 + p$g2. r # (B. 38) ig2. th <- g * ik2 # (B. 39) # h <- (Ep - p$Ea) / (Eg2 - p$Ea) # (B. 42) ik3 <- h * ik2 # (B. 43) # iklim <- (1 - Ig. ratio) * G. lim * pmax(Ep, Eg2)ˆ1. 5 ik4 <- pmin(ik3, iklim) # (B. 47) # iplim <- (1 - Ig. ratio) * G. lim * Epˆ1. 5 # ip <- pmax(pmin(ik4 - ig2. th, iplim), 0) # ig2 <- pmax(ik4 - ip, 0) # (B. 30) # (B. 48) # (B. 49) # (B. 46) } list(ip=ip, ig=ig, ig2=ig2, ik=ik4, mum=mum, Egg=Egg, a=a, b=b, c=c, f=f, g=g, h=h) B. 3. 8 1 2 3 4 5 6 7 8 9 10 11 Igp "Igp" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: } Ipp. sub(p, Ep, Eg, Eg2)$ig B. 3. 9 1 2 Ig2 "Ig2" <function (p, Ep, Eg, Eg2) 137 3 4 5 6 7 8 9 10 11 { # # # # # p: Ep: Eg: Eg2: } Ipp. sub(p, Ep, Eg, Eg2)$ig2 B. 3. 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 gmp "gmp" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: i <- Ipp. sub(p, Ep, Eg, Eg2) ifelse(i$ip <= 0, NA, ifelse(i$Egg <= 0, i$ip * i$a / (i$Egg + Eg2/p$muc), i$ip * 1. 5 / (i$Egg + Eg2/i$mum))) } B. 3. 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rpp "rpp" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: i <- Ipp. sub(p, Ep, Eg, Eg2) df <- 6 / Eg2 * exp(-15*Ep/Eg2) dg <- -15 * (1 - p$g2. r) * (1 - Ep/(Ep + 10))ˆ0. 5 / (Epˆ2 + 20*Ep + 100) dh <- 1/(Eg2 - p$Ea) ifelse(i$ip <= 0, NA, 1/(i$ip * (df/i$f + (dh - dg)/(i$h - i$g)))) } B. 3. 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 mup "mup" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: i <- Ipp. sub(p, Ep, Eg, Eg2) df <- 6/Eg2*exp(-15*Ep/Eg2) dg <- -15 * (1 - p$g2. r) * (1 - Ep/(Ep + 10))ˆ0. 5 / (Epˆ2 + 20*Ep + 100) dh <- 1/(Eg2 - p$Ea) ifelse(i$ip <= 0, NA, ifelse(i$Egg <= 0, i$a / (i$Egg + Eg2/p$muc), 1. 5 / (i$Egg + Eg2/i$mum)) / (df/i$f + (dh - dg)/(i$h - i$g))) 138 17 } B. 3. 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rg2 "rg2" <function(p, Ep, Eg, Eg2) { # # p: # Ep: # Eg: # Eg2: i <- Ipp. sub(p, Ep, Eg, Eg2) df <- -6 * Ep / Eg2ˆ2 * exp(-15*Ep/Eg2) ifelse(i$ig2 <= 0, NA, 1 / (i$ig2 * (df/i$f + i$b / Eg2 + i$a / (p$muc * i$Egg + Eg2)))) } B. 3. 14 - mug12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 "mug12" <function(p, Ep, Eg, Eg2) { # g1-g2 # p: # Ep: # Eg: # Eg2: # # [1]: # [2]: g1-g2 g1-g2 } i <- Ipp. sub(p, Ep, Eg, Eg2) df <- -6 * Ep/Eg2ˆ2 * exp(-15*Ep/Eg2) dg <- -15 * (1 - p$g2. r) * (1 - Ep/(Ep + 10))ˆ0. 5 / (Epˆ2 + 20*Ep + 100) dh <- -(Ep - p$Ea) / (Eg2 - p$Ea)ˆ2 u <- i$a / (i$Egg + Eg2/p$muc) l <- df/i$f + dh/(i$h - i$g) + i$b/Eg2 + i$a/(p$muc * i$Egg + Eg2) m <- ifelse(i$ig2 <= 0, NA, ifelse(i$Egg <= 0, u / l, NA)) m2 <- gmg2(p, Ep, Eg, Eg2)[1] * rg2(p, Ep, Eg, Eg2)[1] c(m, m2) 2 µg1-g2 B. 4 ( ) B. 4. 1 CSV 3 1 139 Eg, Ep, Ip A V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Eg, Ep, Ip 0, 0, 0 0, 50, 0. 005 0, 100, 0. 0118 0, 150, 0. 02 -2, 17, 0 -2, 50, 0. 0015 -2, 100, 0. 0062 -2, 150, 0. 013 -2, 200, 0. 021 -4, 43, 0 -4, 100, 0. 0027 -4, 150, 0. 0075 -4, 200, 0. 0147 -4, 250, 0. 0232 -6, 70, 0 -6, 100, 8. 0E-4 -6, 150, 0. 0040 -6, 200, 0. 0094 -6, 250, 0. 017 -8, 95, 0 -8, 150, 0. 0017 -8, 200, 0. 0053 -8, 250, 0. 0117 -8, 300, 0. 02 -10, 125, 0 -10, 150, 4. 0E-4 -10, 200, 0. 0027 -10, 250, 0. 0074 -10, 300, 0. 0142 -12, 157, 0 -12, 200, 0. 0012 -12, 250, 0. 0043 -12, 300, 0. 0097 -12, 350, 0. 0164 -14, 183, 0 -14, 200, 3. 0E-4 -14, 250, 0. 0024 -14, 300, 0. 0061 -14, 350, 0. 0115 -16, 205, 0 -16, 250, 0. 0010 -16, 300, 0. 0034 -16, 350, 0. 0077 -18, 228, 0 -18, 250, 3. 0E-4 -18, 300, 0. 0017 -18, 350, 0. 0048 -20, 265, 0 -20, 300, 7. 0E-4 -20, 350, 0. 0028 50 20 ( ) CSV CSV mA A Microsoft Excel 140 B. 4. 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 Ip. cal "Ip. cal" <function(fn, name, gfn, G. lim=NULL, Ig. ratio=NULL, verbose=FALSE, . . . ) { # # fn: # name: # gfn: . [. . . ]

LUXMAN SQ507ダウンロード上のご注意

Lastmanualsはユーザー主導型のハードウエア及びソフトウエアのマニュアル(ユーザーガイド・マニュアル・クイックスタート・技術情報など)を共有・保存・検索サービスを提供します。
お探しの書類がなかったり、不完全だったり、言語が違ったり、モデル名や言語が説明と違う場合など、いかなる場合でもLastmanualsはその責を負いません。またLastmanualsは翻訳のサービスもしていません。

規約に同意して「マニュアルをダウンロード」をクリックすればLUXMAN SQ507のマニュアルのダウンロードが開始されます。

マニュアルを検索

 

Copyright © 2015 - LastManuals - すべての権利。
指定の商標やブランド名はそれぞれ個別の所有者のものです。

flag